
Chapter 1 + 2
!

Introduction !
Main Topics: !
The study of OS includes mainly three basic topics which are related to the three
basic hardware components of the machine (CPU , MEMORY , I-O DEVICES) : !
(1) Processor Management (CPU management). !
(2) Memory Management. !
(3) File System Management. !
What is an operating system? !
Operating system - a program (a set of programs) that acts as an intermediary
(interface) between a user (running computer program) and the computer hardware. !
Operating system goals: !
- Overall goal :Execute user programs and make solving user problems easier. !
- Primary goal :Make the computer system convenient to use. !
- Secondary goal :Use the computer hardware in an efficient manner. !
Computer System Components !
1. Hardware - provides basic computing resources (CPU, memory, I/O devices).
 Physical devices : Wires, chips, power supplies, … etc
 Microprogram – a primitive software layer which acts as interface between
 The bare hardware and the machine lang. Program.
 An interpreter that fetches and executes the machine (assembly) lang.
 Instruction in very little steps.
 Machine language : The set of instructions the Microprogram interprets. !
2. Operating system - controls and coordinates the use of the hardware among the
 various application programs for the various users. !
3. Applications programs - define the ways in which the system resources are
 used to solve the computing problems of the users (compilers, database
 systems, video games, business pro-grams). !

4. Users programs. !!
Operating System Definitions

- Can’t give precise definition, like t he government, not useful by itself. !
- Instead of defining the OS , what it is. We will state what it can do. !
- It depends how we view the OS : !
* Control program : controls the execution of user programs and operation
 of I/O devices.
 (Overall objective: Executes user programs) !
* Extended machine : It hides all the complexity of system programming.
 (Primary goal :Conveniency) !
* Resource (manager) allocator - manages and allocates resources.
 (Secondary goal : Efficiency) !!
* Kernel - the one program running at all times (Anything else is just an
 application programs). !!!
History of Operating System: !!
(#) Early Systems - bare machine (early 1950s) !
 Structure:
 - Large machines run from console
 - Single user system

- Programmer/User as operator
- Paper tape or punched cards !

 Early Software:
 - Machine language
 - Assemblers
 - Loaders
 - Linkers
 - Compilers !
Inefficient use of expensive resources:
 - LowCPU utilization

diagram

- significant amount of setup time !!
(#) A simple Batch systems !
* Automatic job sequencing – automatically transfers control from one job to
 another. First operating system, which is called the Resident Monitor

 Problem: !
 Poor Performance - since I/O and CPU could not overlap, and card reader very
 slow. (Slow I/O devices relative to CPU speed ,
 fast card reader 1200 cards/minute ,CPU processes 300 cards/second)

!
!
!
Solution: !
* Off-line operation : speed up computation by loading jobs into memory from
 tapes and card reading and line printing done off-line. !!!!!!!!!!
* Bufferring : Using buffers by which the I-O of one job is overlapped with
 its execution. !!!!!!!!!!
* Spooling : Overlap the I-O of one job with the execution of another job !!!

diagram

diagram

!!!!!!
* While executing one job, the operating system: !
- reads the next job from the card reader into a storage area on the disk (job queue). !
- outputs the printout of previous job from disk to the line printer. !!
 * Job pool - data structure that allows the operating system to select which job to
 run next, in order to increase CPU utilization. !!!
Multiprogrammed Batch Systems (Multiprogramming) !
Several jobs are kept in main memory at the same time, and the CPU is fluctuates
among them.
i.e. , the CPU switches to another job when that job needs to wait, typically
 when it needs I-O. In addition to: (Finishes execution, System Interrupt) !!!!!!!!!!!!
OS Features Needed for Multiprogramming !
(-) I/O routine supplied by the system.
(-) Memory management - the system must allocate the memory to several jobs.
(-) CPU scheduling - the system must choose among several jobs ready to run.
(-) Allocation of devices. !!!
Time-Sharing Systems !

diagram

diagram

(*) Several jobs are kept in main memory at the same time, and the CPU is fluctuates
 among them. !
(*) Every job is assigned a slice of time (quantum Q) !
(*) The CPU switches to another job when that job the Q for that is finished.
 In addition to: (Needs I-O ,Finishes execution, System Interrupt) !
(*) A job is swapped in and out of memory to the disk. !!
 (#) Parallel Systems
 Multiprocessor systems with more than one CPU in close communication. !
(A) Tightly coupled system - processors share memory and a clock; communication
 usually takes place through the shared memory. !
 Advantages of parallel systems:
 - Increased throughput
 - Economical
 - Increased reliability !
(*) Symmetric multiprocessing
 - Each processor runs an identical copy of the operating system.
 - Many processes can run at once without performance deterioration. !
(*) Asymmetric multiprocessing
1. Each processor is assigned a specific task; master processor schedules and

allocates work to slave processors. (Master/Slave Relationship)
2. More common in extremely large systems. !
(B) Distributed Systems
 Distribute the computation among several physical processors. !
(*) Loosely coupled system - each processor has its own local memory; processors
 communicate with one another through various communication lines, such as
 high-speed buses or telephone lines.

 Advantages of distributed systems:
 - Resource sharing
 - Computation speed up - load sharing

 - Communication !
(#) Real-Time Systems !
(*) Special purpose Os Often used as a control device in a dedicated application
 such as controlling scientific experiments, medical imaging systems, industrial
 control systems, and some display systems.

!
(*) Well-defined fixed-time constraints.

!!!!!!!!!!!!!!!
Computer-System Operation !!!!!!!
(*) I/O devices and the CPU can execute concurrently. !
(*) Each device controller is in charge of a particular device type. !
(*) Each device controller has a local buffer. !
(*) CPU moves data from/to main memory to/from the local buffers. !
(*) I/O is from the device to local buffer of controller. !
(*) Device controller informs CPU that it has finished its operation by causing
 an interrupt. !
Bootstrap program !
(*) The initial program that runs when the power is on. !
(*) It initializes all aspects of the computer, CPU registers, Device Controllers,
 Memory contents) . !
(*) Loads the Kernel of the OS into memory.

diagram

!
(*) The OS executes the first process init and waits for an event to occur (interrupt). !!
 Interrupts !
 A signal sent to the CPU by a Hardware or a Software (System call). !
Events that may trigger interrupts:
- Completion of an I-O.
- Division by zero.
- Invalid memory access.
- Request for OS service. !
($$$) Each interrupt has a special service routine for handling the interrupt. !
(*) Interrupt transfers control to the interrupt service routine, generally, through
 the interrupt vector, which contains the addresses of all the service routines. !
(*) Interrupt architecture must save the address of the interrupted instruction. !
(*) Incoming interrupts are disabled while another interrupt is being processed
 to prevent a lost interrupt. !
(*) A trap (or an exception) is a software generated interrupt caused either by :
2. An error : Division by zero , invalid memory access.
3. A user program request for a service by the OS. !
(*) An operating system is interrupt driven ,idle if there is no activity or interrupt. . !!!
Interrupt Handling !
(1) The operating system preserves the state of the CPU by storing registers and
 the program counter. !
(2) Determines which type of interrupt has occurred:
 - polling (querying of all I-O devices which requested service.
 - By the vectored interrupt system. !
(3) A correct action should be taken for each type of interrupt by executing
 the appropriate segment of code for that interrupt. !
I-O Interrupts Structure !

To start an I-O operation: !
- CPU loads the appropriate register within the device controller with instruction.
- Device controllers examines the contents of the register to determine the action.
- Once the I-O is complete the device controller informs the CPU that I-O is
 through an interrupt. !!!
There are two types of I-O. !
 (1) SYNCHRONOUS : After I/O starts, control returns to user program only upon
 I/O completion which is accomplished by :
 - wait instruction idles the CPU until the next interrupt.
 - loop (LOOP : jmp LOOP) !
 Advantage : at most one I/O request is outstanding at a time; no simultaneous
 I/O processing. !
(2) ASYNCHRONOUS : After I/O starts, control returns to user program without
 waiting for I/O completion.
4. System call: request to the operating system to allow user to wait for I/O
 completion. !!!!
Direct Memory Access (DMA) !!
(*) Used for high-speed I/O devices able to transmit information at close to
 memory speeds. !
(*) Device controller transfers blocks of data from buffer storage directly to
 main memory without CPU intervention. !
(*) Only one interrupt is generated per block, rather than the one interrupt per byte. !!
Storage Structure !
 Primary Storage :

Main memory !
5. The Only large storage media that the CPU can access directly.
6. Array of words, each is addressable.

7. Activity is a sequence of load and store instructions. !
 Load instruction : moves a word(s) from memory to an internal register
 Generally known as Instruction Register (IR).
 store instruction : moves a word(s) from the register into a memory location. !!
Instruction Cycle: !
8. Fetch instruction from memory into instruction register (IR)
9. Decode the instruction. Fetch operands and operations.
10. Execute the operands with the operations.
11. Store the result back into memory.
Secondary storage !
 extension of main memory that provides large nonvolatile storage capacity. !
Storage Hierarchy
 Storage systems organized in hierarchy:
12. speed
13. cost
14. volatility !!!!!!!
Caching !
 copying information into faster storage system. !
15. Registers are considered as a fast cache to memory.
16. Main memory can be viewed as a fast cache for secondary memory. !
Example: Instruction cache.
 A cache register which contains the next instruction to be executed instead
 of waiting for fetching the next instruction from memory. !!!
Hardware Protection !
 (*) Dual-Mode Operation
 (*) I/O Protection
 (*) Memory Protection

diagram

 (*) CPU Protection !
Dual-Mode Operation !
- Sharing system resources requires operating system to ensure that an incorrect
 program cannot cause other programs to execute incorrectly. !
- Provide hardware support to differentiate between at least two modes of operations. !
 1. User mode - execution done on behalf of a user.
 2. Monitor mode (also supervisor mode or system mode) - execution done on
 behalf of operating system. !
- Mode bit added to computer hardware to indicate the current mode:
 0: monitor
 1: user
- When an interrupt or fault occurs hardware switches to monitor mode. !!!!!!!!
Privileged instructions can be issued only in monitor mode. !!!!!!
I/O Protection !
- All I/O instructions are privileged instructions. !
- Must ensure that a user program could never gain control of the computer
 in monitor mode (i.e., a user program that, as part of its execution, stores
 a new address in the interrupt vector). !
Memory Protection !
- Must provide memory protection at least for the interrupt vector and the interrupt
 service routines. !
- In order to have memory protection, add two registers that determine the range of
 legal addresses a program may access:

diagram

!
 1- base register - holds the smallest legal physical memory address.
 2- limit register - contains the size of the range. !
- Memory outside the defined range is protected. !!!!!!!!!!
CPU Protection !
(*) Timer - interrupts computer after specified period to ensure operating system
 maintains control.
 - Timer is decremented every clock tick.
 - When timer reaches the value 0, an interrupt occurs. !
(*) Timer commonly used to implement time sharing. !
(*) Timer also used to compute the current time. !
(*) Load-timer is a privileged instruction. !!

!
!
!
!

OPERATING-SYSTEM STRUCTURES !!
Most operating systems support the following types of system components: !
- Process Management
- Main-Memory Management
- Secondary-Storage Management
- I/O System Management
- File Management !!

diagram

!
Process Management !
(*) A process is a program in execution. A process needs certain resources, including
 CPU time, memory, files, and I/O devices, to accomplish its task. !
(*) The operating system is responsible for the following activities in connection with
 process management: !
 - process creation and deletion.
 - process suspension and resumption.
 - provision of mechanisms for:
 # process synchronization
 # process communication !!!
Main-Memory Management !
(*) Memory is a large array of words or bytes, each with its own address. It is a
 repository of quickly accessible data shared by the CPU and I/O devices. !
(*) Main memory is a volatile storage device. It loses its contents in the case of
 system failure. !
(*) The operating system is responsible for the following activities in connection with
 memory management: !
 - Keep track of which parts of memory are currently being used and by whom.
 - Decide which processes to load when memory space becomes available.
 - Allocate and deallocate memory space as needed. !!!!!!!
Secondary-Storage Management !
(*) Since main memory (primary storage) is volatile and too small to accommodate all
 data and pro-grams permanently, the computer system must provide secondary
 storage to back up main memory. !
(*) Most modern computer systems use disks as the principle on-line storage medium,
 for both pro-grams and data. !

(*) The operating system is responsible for the following activities in connection with
 disk management: !
 - Free-space management
 - Storage allocation
 - Disk scheduling !!
I/O System Management !
 The I/O system consists of:
 - A buffer-caching system
 - A general device-driver interface
 - Drivers for specific hardware devices !!
File Management !
(*) A file is a collection of related information defined by its creator. Commonly, files
 represent programs (both source and object forms) and data. !
(*) The operating system is responsible for the following activities in connection with
 file management: !
 - File creation and deletion.
 - Directory creation and deletion.
 - Support of primitives for manipulating files and directories.
 - Mapping files onto secondary storage.
 - File backup on stable (nonvolatile) storage media. !!!
($$) The program that reads and interprets control statements is called variously: !
 - control-card interpreter
 - command-line interpreter
 - shell (in UNIX) !
Its function is to get and execute the next command statement. !!!
Operating-System Services !
(*) Program execution: system capability to load a program into memory and to
 run it. I/O operations - since user programs cannot execute I/O operations directly,
 the operating system must provide some means to perform I/O.

!
(*) File-system manipulation - program capability to read, write, create, and delete
 files. !
(*) Communications - exchange of information between processes executing either
 on the same computer or on different systems tied together by a network.
 Implemented via shared memory or message passing. !
(*) Error detection - ensure correct computing by detecting errors in the CPU and
Memory hardware, in I/O devices, or in user programs. !
Additional operating-system functions exist not for helping the user, but rather for
ensuring efficient system operation. !
(*) Resource allocation - allocating resources to multiple users or multiple jobs
 running at the same time. !
(*) Accounting - keep track of and record which users use how much and what kinds
 of computer resources for account billing or for accumulating usage statistics. !
(*) Protection - ensuring that all access to system resources is controlled. !!!
System Calls !
(*) System calls provide the interface between a running program and the operating
 system. !
 - Generally available as assembly-language instructions.
 - Languages defined to replace assembly language for systems programming

 languages defined to replace assembly language for systems programming
 allow system calls to be made directly (e.g., C, Bliss, PL/360). !

(*) Three general methods are used to pass parameters between a running program
 and the operating system: !
 - Pass parameters in registers.
 - Store the parameters in a table in memory, and the table address is passed as
 a parameter in a register.
 - Push (store) the parameters onto the stack by the program, and pop off the
 stack by the operating system. !!!!
System Programs

!
(*) System programs provide a convenient environment for program development and
 execution. !
They can be divided into:
- File manipulation
- Status information
- File modification
- Programming-language support
- Program loading and execution
- Communications
- Application programs !
(*) Most users’ view of the operation system is defined by system programs, not the
 actual system calls. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!
Chapter 3 + 4 !

Processes + Threads !!
Process Concept !
(*) An operating system executes a variety of programs:
 - Batch system - jobs
 - Time-shared systems - user programs or tasks !
(*) Textbook uses the terms job and process almost interchangeably. !
(*) Process; a program in execution; process execution must progress in a
 sequential fashion. !
(*) A process includes:
 - program counter
 - stack
 - data section
 !
Process States !
(*) As a process executes, it changes state. !
 - New: The process is being created.
 - Running: Instructions are being executed.
 - Waiting: The process is waiting for some event to occur.
 - Ready: The process is waiting to be assigned to a processor.
 - Terminated: The process has finished execution. !

(*) Diagram of process state: !!!!
 !!!!

diagram

!!!!!!!
Process Control Block (PCB) - Information associated with each process. !
it is a data structure which contains the information or data about the process, mostly this data
structure is a table. !
- Process ID (number)
- Process state
- Program counter
- CPU registers(accumulator, index, stack pointer, …)
- CPU scheduling information(process priority, pointers to queues, …)
- Memory-management information(base & limit registers, page table, …)
- Accounting information
 - I/O status information(I-o devices allocated, opened files, …) !
Note: keep in mind that the process is a sequence of cpu execution(burst) and I-O
 waits. !!!!!!!
Process scheduling queues !
- job queue - set of all processes in the system.
- ready queue - set of all processes residing in main memory, ready and waiting to
 execute.
- device queues - set of processes waiting for a particular I/O device. !
(*) Process migration between the various queue. !!!!!!!!!

diagram

Job queue ready queue cpu

I/O queue

meduim queue

Long term
Short term

I/O needed

I/O completed

Schedulers !
- Long-term scheduler (job scheduler) – selects which processes should be brought
 into the ready queue.
which process will be selected from the job pool to enter memory for execution !
- Short-term scheduler (CPU scheduler) - selects which process should be
 executed next and allocates CPU. !
- Medium-term scheduler – jobs preempted from memory for some reason. !!!!!!
(*) Short-term scheduler is invoked very frequently (milliseconds)è(must be fast). !
(*) Long-term scheduler is invoked very infrequently (seconds, minutes)è(may
 be slow). !
(*) The long-term scheduler controls the degree of multiprogramming.
degree of multiprogramming: is the number of jobs in memory (ready queue) for execution !
(*) Processes can be described as either:
 I/O-bound process - spends more time doing I/O than computations; many short
CPU bursts.
4. CPU-bound process - spends more time doing computations; few very long CPU

bursts.
note: the OS keep the system on balance of loading, means it tries the best to use all resources
of the computer, if the a job in ready queue is mostly IO bound job and IO queue is not busy,
then the os chooses it for execution even if there is a CPU bound job ahead of it, same story
goes the opposite direction. !
Context Switch !
(*) When CPU switches to another process, the system must save the state of the old
 process and load the saved state for the new process. !
(*) Context-switch time is overhead; the system does no useful work while switching. !
(*) Time dependent on hardware support. !

Job1 CPU Job2 !!!

diagram

!!!
Process Creation !
(*) Parent process creates children processes, which, in turn create other processes,
 forming a tree of processes. !
(*) Resource sharing
 - Parent and children share all resources.
 - Children share subset of parent’s resources.
 - Parent and child share no resources.
note: the processes in the system compete (fight) for the computer resources (IO, CPU and
Memory) !
(*) Execution
 - Parent and children execute concurrently.
 - Parent waits until children terminate. !
(*) Address space
 - Child duplicate of parent.
 - Child has a program loaded into it. !
(*) UNIX examples
 - fork system call creates new process.
 - execve system call used after a fork to replace the process’ memory space
 with a new pro-gram. !!
Process Termination !
(*) Process executes last statement and asks the operating system to delete it (exit).
 - Output data from child to parent (via fork).
 - Process’ resources are deallocated by operating system. !
Note: the OS does not allow any child process to continue beyond it’s parent. !!
(*) Parent may terminate execution of children processes (abort).

 -Child has exceeded allocated resources.
 - Task assigned to child is no longer required.
 - Parent is exiting.
 # Operating system does not allow child to continue if its parent terminates.
 # Cascading termination. :if the parent exits then all children and descendant must
exit by force. !

!
Cooperating Processes !
Concurrent processes are either : (runs in parallel) !
(1) Independent process cannot affect or be affected by the execution of
 another process. !
(2) Cooperating process can affect or be affected by the execution of another process. !
(*) Advantages of process cooperation:
 - Information sharing
 - Computation speed-up
 - Modularity
 - Convenience !!!
Producer-Consumer Problem !
(*) Talking about concurrency requires :
 - Cooperating among processes (i.e. communication between processes)
 - Synchronization of processes action. !
(*) To illustrate the idea of cooperating process consider the producer-consumer
 problem ,i.e. Paradigm for cooperating processes;
 - producer process produces information.
 - consumer process consumes this information. !
Examples: !
 * Print program produces characters consumed by the printer.
 *Compiler produces assembly code consumed by the assembler.
 *Assembler produce object module consumed by the loader. !
(*) There must be a buffer of items to be filled by the producer, and then consumed
 by the consumer. !
 - unbounded-buffer places no practical limit on the size of the buffer.

 - bounded-buffer assumes that there is a fixed buffer size.

Implementation of the producer - consumer problem:
we will use a circular buffer (queue) in the implementation. !
empty queue means in pointer points at the same location that out pointer !

in: pointer (subscript) where data is entered in the queue
out: pointer (subscript) where data is taken from the queue
n: is the size of the buffer
nextP, nextC: item

Full buffer case example n=7 !
full buffer means in+1 mod n = out !!
$$$ Shared data !
 const n;
 type item = ... ;
 var buffer: array [0..n-1] of item;
 in, out: 0..n-1;

 in := 0;
 out := 0;
- Producer process !
repeat
 ...
 produce an item in nextp
 ...
 while in+1 mod n = out do no-op;
 buffer[in]:=nextp;
 in := in+1 mod n;
until false;
 !
- Consumer process !
repeat
 while in = out do no-op;

6 D

5 C

4 B

3 A (out pointer)

2 EMPTY (in pointer)

1 F

0 E

 nextc := buffer[out];
 out := out+1 mod n;
 ...
 consume the item in nextc
 ...
until false; !!
- Solution is correct, but can only fill up n –1 buffer. !!!!
Threads !
A normal process (heavy weight process) contains:
1. code section
2. data section
3. stack
thread contains

- thread id
- registers
- stack
- pc

Advantages of threads:
- resources sharing
- economy
- system utilization
- parallel processing !

(*) A thread (or lightweight process LWP) is a basic unit of CPU utilization; it
 consists of: !
 - program counter
 - register set
 - stack space !
(*) A thread shares with its peer threads its: !
 - code section
 - data section
 - operating-system resources !
collectively known as a task. !
(*) A traditional or heavyweight process is equal to a task with one thread. !

Check book for diagram

There are two kinds of threads:
1. User level: this kind of threads is managed totaly by the programer i.e. the programer or

user programs (write the parallel code) for this kind of implementation (DIFFICULT TO
PROGRAM)

2. Kernal level: OS level
a. this kind of thread is managed by the os
b. most operating system has this kind of support (Linux, windows, ..) !

There 3 kind of relationship between user & kernal threads:
1. Many-to-one: (diagram)

a. It keeps many user threads to one Kernal Thread
b. There is no parallel processing
c. If one htread blocks the Kernal thread the system collapses and all other threads are

blocked !
2. One-to-One: (diagram)

a. Every user thread is mapped into one kernal thread
b. parallel processing is allowed
c. If one kernal blocked, other threads continue working

3. Many-to-many:
a. It maps(multiplexes) many user threads to equal or less number of kernal threads
b. parallel processing is allowed
c. if one thread is blocked, other threads continue working !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Chapter 5 !
Basic Concepts !

each process is a sequence of CPU bursts and I/O waits !
(*) Maximum CPU utilization obtained with multi-programming. !
(*) CPU-I/O Burst Cycle - Process execution consists of a cycle of CPU execution
 and I/O wait. !
(*) CPU burst distribution (diagram from book) !
(*) Short-term scheduler -selects from among the processes in memory that are
 ready to execute, and allocates the CPU to one of them. !
(*) CPU scheduling decisions may take place when a process:

 1. switches from running to waiting state.
 2. switches from running to ready state.
 3. switches from waiting to ready.
 4. terminates. !
(*) Scheduling under 1 and 4 is nonpreemptive. !
(*) All other scheduling is preemptive. !!!
Dispatcher It is the algorithm which is in charge of the switching process !
(*) Dispatcher module gives control of the CPU to the process selected by the
 short-term scheduler; this involves:
 - switching context
 - switching to user mode
 - jumping to the proper location in the user pro-gram to restart that program !
(*) Dispatch latency - the time it takes for the dispatcher to stop one process and start
 another running. it should be as minimum as possible !!!!!!!

Scheduling Criteria !
(*) CPU utilization - keep the CPU as busy as possible (we need is as max as possible) !
(*) Throughput - # of processes that complete their execution per time unit (we need is as
max as possible) !
(*) Turnaround time - amount of time to execute a particular process it is the time for
submitting your job until it finishes execution (we need is as min as possible) !
(*) Waiting time - amount of time a process has been waiting in the ready queue (we need is
as min as possible) !
(*) Response time - amount of time it takes from when a request was submitted
 until the first response is produced, not output (for time-sharing environment) (we need is
as min as possible) !!
Optimization !
- Max CPU utilization
- Max throughput
- Min turnaround time
- Min waiting time
- Min response time !
(1) First-Come, First-Served (FCFS) Scheduling !
Example:
 Process Burst time
 ---------- -------------
 P1 24
 P2 3
 P3 3 !!
(*) Suppose that the processes arrive in the order: P1 , P2 , P3 .
 Compute Average waiting time & turnaround time.
Turnaround time (ATT) = [(24-0) + (3-0) + (3-0)] /3
waiting time = [(24-24) + (27-3) + (30-3)] /3
waiting time = ATT - CPU burst
(*) Suppose that the processes arrive in the order: P2 , P3 , P1 .
 Compute Average waiting time & turnaround time. !
 (-) Much better than previous case.
 (-) Convoy effect: short process behind long process !

!
 (2) Shortest-Job-First (SJF) Scheduling !
(*) Associate with each process the length of its next CPU burst. Use these lengths
 to schedule the process with the shortest time. !
(*) Two schemes:
1. Non-preemptive - once CPU given to the process it cannot be preempted until
 it completes its CPU burst.
2. Preemptive - if a new process arrives with CPU burst length less than
 remaining time of current executing process, preempt. This scheme is
 known as the Shortest-Remaining-Time-First (SRTF). !
(*) SJF is optimal - gives minimum average waiting time for a given set of processes. !
Example : !
 Process Arrival time CPU time
 ---------- ---------------- -------------
 P1 0 7
 P2 2 4
 P3 4 1
 P4 5 4 !
(*) SJF (non-preemptive) !
 Average waiting time = (0 + 6 + 3 + 7)/4 = 4 !
(*) SRTF (preemptive) !
 Average waiting time = (9 + 1 + 0 + 2)/4 = 3 !
Note: if SJF gives the minimum waiting time, why don’t we use it?
Problem is starvation!!!
In an SJF if a process has long cpu burst other processes will starve for a long time
Solution: Aging !
Major problem is how the OS decides the duration (length) of the next cpu burst for the job?
solution: the OS only estimates the length of the next CPU burst. !
How do we know the length of the next CPU burst? !
- Can only estimate the length. !
- Can be done by using the length of previous CPU bursts, using exponential
 averaging. !

1. Tn = actual length of n th CPU burst
2. Yn = predicted value of n th CPU burst
3. 1 ≥ W ≥ 0
4. Define: Yn+1 = W *Tn +(1 - W) Yn !
Examples: !
(*) W = 0
 Yn+1 = Yn

 Recent history does not count.
(*) W = 1
 Yn+1 = Tn (better)
 Only the actual last CPU burst counts. !
(*) If we expand the formula, we get:
 Yn + 1 = W * Tn + (1 - W) * W * Tn -1 +
 (1 - W)2 * W * Tn-2 + ... + (1 - W)q * W * Tn-q !
So if W = 1/2 è each successive term has less and less weight. !!
(3) Priority Scheduling !
(*) A priority number (integer) is associated with each process. !
(*) The CPU is allocated to the process with the highest priority (smallest integer
 ≡ highest priority).
 a) preemptive
 b) nonpreemptive !
(*) SJN is a priority scheduling where priority is the predicted next CPU burst time. !
(*) Problem ≡ Starvation - low priority processes may never execute.
 Solution ≡ Aging - as time progresses increase the priority of the process. !!
(4) Round Robin (RR) !
(*) Each process gets a small unit of CPU time (time quantum), usually 10-100
 milliseconds. After this time has elapsed, the process is preempted and added
 to the end of the ready queue. !
(*) If there are n processes in the ready queue and the time quantum is q , then each
 process gets 1/n of the CPU time in chunks of at most q time units at once. No !
 process waits more than (n -1)q time units. !

(*) Performance !
 q large è FIFO
 q small è q must be large with respect to context switch, otherwise overhead is
 too high. !!!!
Example of RR with time quantum = 20 : !
 Process CPU times
 ---------- ---------------
 P1 53
 P2 17
 P3 68
 P4 24

 Compute the average turnaround and waiting times
ATT= 113.5
AWT= 73 !
(*) Typically, higher average turnaround than SRT, but better response. Also no starvation! !
(5) Multilevel Queue !
(*) Ready queue is partitioned into separate queues.
 Example: foreground (interactive)
 background (batch) !
These are just examples, means could be there more than two queues , as much as I want !
(*) Each queue has its own scheduling algorithm.
 Example: foreground - RR
 background - FCFS !
(*) Scheduling must be done between the queues.

 - Fixed priority scheduling
 Example: serve all from foreground then from background.
 Possibility of starvation.

- Time slice - each queue gets a certain amount of CPU time which it can schedule
 amongst its processes.
 Example:
 80% to foreground in RR
 20% to background in FCFS

!!
(*) Two schemes:
1. Preemptive
2. Non-preemptive !!!
(6) Multilevel Feedback Queue !
(*) A process can move between the various queues; aging can be implemented this
 way. !
(*) Multilevel-feedback-queue scheduler defined by the following parameters: !
- number of queues
- scheduling algorithm for each queue
- method used to determine when to upgrade a process
- method used to determine when to demote a process
- method used to determine which queue a process will enter when that process
 needs service !
Example of multilevel feedback queue: !
(*) Three queues:
 - Q0 - time quantum 8 milliseconds
 - Q1 - time quantum 16 milliseconds
 - Q2 - FCFS
(*) Scheduling !
A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8
milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q 1 .At Q1 ,
job is again served FCFS and receives 16 additional milliseconds. If it still does not
complete, it is preempted and moved to queue Q 2 . !
Algorithm Evaluation !
(*) Deterministic modeling(Analytic Evaluation) - takes a particular predetermined
 workload and defines the performance of each algorithm for that workload. !
(*) Queuing models !
(*) Simulation !
(*) Implementation !!

Chapter 6
!
Concurrent Processes and Process Synchronization !!

Concurrent Processes !
- Concurrent process and either independent or cooperating
- Independent process : can't affect or be affected by the processors !!
Precedence Graph: !
Given the following statements:
(1) a = x + y
(2) b = z + 1
(3) c = a – b
(4) w = c +1 !
Clearly, !
statements (3) & { (1) or (2) }can't executed concurrently.
 (4) & (3) can't executed concurrently.
 (4) & { (1) or (2) or (3) } can't executed concurrently. !
- But statements (1) & (2) can be executed concurrently. !
- So if we have multiple functional units in our CPU such as adders or we have
multiprocessor system then statements (1) & (2) can be executed concurrently (in
parallel). !!
Definition: A precedence graph is a directed graph whose nodes correspond to
statements. An edge from node Si to node Sj means that Sj is only executed after Si . !!!!!!! !

S3
S1

S2

S4 S6

S7S5

!
In the given graph: !

- S2 & S3 can be executed only after S1 completes
- S4 can be executed only after S2 completes.
- S5 & S6 can be executed only after S4 completes.
- S7 can be executed only after S5, S6, S3 completes.
- S3 can be executed concurrently with S2 , S4 , S5 , S6 . !!

Concurrency Condition
• How do we know if two statements can be executed concurrently and produce the

same result?
• Define:

R(Si) = {a1, a2, …, am} be the READ set for statement Si, which is the set of all
variables whose values are referenced by statement Si during execution.
W(Si) = {b1, b2, …, bn} be the WRITE set for statement Si, which is the set of all
variables whose values are changed (written) by the execution of statement Si !
Examples : Given the statements: !

- S : c = a – b
 R(S) = {a, b}
 W(S) = {c} !

- S : w = c + 1
 R(S) = {c}
 W(S) = {w} !

- S: x = x +2
 R(S) = {x}
 W(S) = {x} !

- S: read(a)
 R(S) ={a}
 W(S) ={a} !
The Bernstein's conditions for concurrent statements are:
 Given the statements S1 & S2 , then S1 & S2 can be executed concurrently if:

R(S1) ∩ W (S2) = ∅
W(S1) ∩ R (S2) = ∅
W(S1) ∩ W (S2) = ∅ !!

!
Example:
Given, S1 : a = x+ y

 S2 : b = z+ 1
 S3 : c = a+b
 S4 : w = c+1

R(S1) = {x,y}
W(S1) = {a}
R(S2) = {z}
W(S2) = {b}
{x,y} ∩ {b} = ∅
{z} ∩ {b} = ∅
{a} ∩ {b} = ∅
Example:
Given,
 S3 : c = a-b
R(S3) ∩ W(S2) = {a, b} ∩ {b} ≠ ∅ !

Fork & Join Constructs: !
• Precedence graph is difficult to use in Programming Languages, so other means

must be provided to specify precedence relation. !
• The Fork L instruction produces two concurrent executions.

- One starts at statement labeled L.
- Other, the continuation of the statement following the fork instruction !

Example: The programming. segment corresponds to the precedence graph is: !
 S1;
 Fork L;
 S2 ; (cpu1)
 .
 :

 L: S3 ; (cpu2) !!!
(*) When the fork L statement is executed, a new computation is started at S3 which is
executed concurrently with the old computation, which continues at S2. That is, the
fork statement splits one single corporation into two independent computation, hence
the name Fork !

S1

fork

S3S2

• The join instruction recombine two concurrent computation. Each computation
must ask to be joined. !
Since the two computations executes at different speeds, the statement which
executes the join first is terminated first, while the second in allowed to continue. !

• For 3 computations, two in terminated while the third continues. !
• If count is number of computations to join, then the execution of the join has the

effect !
count = count – 1;
If count ≠ 0 then quit (quit this computation)

The join statement for two computations is executed atomically, i.e. can't be executed
concurrently but in a sequential manner, because this might affect count giving a
wrong result.
For example, if both decrement count at same time then count = 0, and the
computation dues not quit. !
• For two processes: !

Count =2 (Number of computations to be merged)
Fork L1;
.
:
S1 ;
goto L2;

 L1 : S2
 L2 : join count !!

• Let us go back to out four statements in the beginning of this chapter. Using fork &
join, this will look lila: !

count =2;
Fork L1;
a = x+y;
goto L2;

 L1 : b=z+1;
 L2 : joint count;

 c =a-b;
 w =c+1; !

• For the precedence graph earlier:

S1

fork

S3S2

join

!
S1 ;
count = 3
Fork L1;

S2;

S4
Fork L2;
S5;
goto L3;

 L2 : S6;
goto L3;

 L1 : S3;
 L3 : join count ;

S7; !!!
• Another example is to copy a sequential file f to g using double buffers r & s.
• The program can read from f & write to g concurrently !!

T = some –record-type;
f , g : file of T;
r, s: T
Begin
 reset (f)
 read (f,r);
 while (not eof (f)) do

begin
 count = 2;
 s: = r;
 Fork L1;
 Write (g, s);
 goto L2;

 L1: read (f,r);
 L2: join count;
 End;
 Write (g,r);

End; !!!!!

Another Way to copy:
T = some –record-type;
f , g : file of T;
r, s: T
Begin
 reset (f)
 read (f,r);
 while (not eof (f)) do

begin
 s: = r;
 Write (g, s);
 read (f,r);

 End;
 Write (g,r);

End;
 
The concurrent statement: !
• The fork & join instructions are powerful means of writing concurrent programs,

unfortunately, it is clumsy and very difficult to keep track, because the fork is
similar to goto statements.

• A higher–level language constructs for specifying concurrency due to Dijkstra
using the notations: parbegin / parend !!

Example: !
 S0;

Parbegin
 S1;
 S2;
 :
 Sn;
Parend;
Sn+1; !

• All statements enclosed between parbegin and parend can be executed concurrently
(*) In our pervious example, !
parbegin
 a = x+y;
 b = z+1;
parend ;
 c =a-b;

 w =c+1; !
(*) In the example: !
S1;
parbegin
 S3;
 begin
 S2;
 S4;
 parbegin
 S5;
 S6;
 parend;
 end;
parend;
S7; !
(*) For the files copying files : !
begin
 reset (f);
 read (f, r);
 while (not eof (f)) do
 begin
 S = r;
 parbegin
 write (g, s);
 read (f, r);
 parend;
 end;
 write (g,r);
end; !!!!!!!!!!!

!!!!!!!!!!!!!!!!
Process Synchronization

!
Background
!
• Process Cooperation

o Information Sharing

o Computation Speedup

o Modularity

o Convenience !
Example : Producer-Consumer problem , the bounded buffer problem:

 Data Structure used: !
 item . . ; //can be of any data type

 item buffer[n], nextp , nextc;  
 int in = 0, out = 0;  !!

!
- Shared memory solution to bounded buffer problem discussed before allows at
most n - 1 items in buffer at the same time.
- Suppose that we modify the producer consumer code by adding a variable
counter, initialized to 0 and incremented each time a new item is added to the
buffer, and decremented each time an item is taken from the buffer.

!
!
Bounded-Buffer
 Data Structure used: !!
 item . . ; //can be of any data type

 item buffer[n], nextp , nextc;  
 int in = 0, out = 0;  
 int counter = 0;  !
 !!

!!!
• Counter = counter + 1; could be implemented as 

 
 register1 = counter  

Producer:  
 do  
 { ...  
 produce an item in nextp  
 ...  
 while ((in+1)%n ==out)  
 no-op; // full buffer  
 buffer[in] = nextp;  
 in = (in + 1) % n;
 }  
 while true;

Consumer:  
 do  
 { while (in == out)  
 no-op; // empty buffer  
 nextc = buffer[out];  
 out = (out + 1)% n;  
 ...  
 consume the item in nextc  
 ...
 }  
 while true;  

Producer:  
 do  
 { ...  
 produce an item in nextp  
 ...  
 while (counter == n)  
 no-op;  
 buffer[in] = nextp;  
 in = (in + 1) % n;  
 counter = counter + 1;
 }  
 while true;

Consumer:  
 do  
 { while (counter == 0)  
 no-op;  
 nextc = buffer[out];  
 out = (out + 1)% n;  
 counter = counter - 1;  
 ...  
 consume the item in nextc  
 ...
 }  
 while true;  

 register1 = register1 + 1  
 counter = register1 !!

• Counter = counter – 1; could be implemented as 
 
 register2 = counter  
 register2 = register2 - 1  
 counter = register2 !!

• Consider this execution interleaving:
S0: producer execute register1 = counter {register1 = 5} 
S1: producer execute register1 = register1 + 1 {register1 =
6}  
S2: consumer execute register2 = counter {register2 = 5}  
S3: consumer execute register2 = register2 - 1 {register2 =
4}  
S4: producer execute counter = register1 {count = 6 }  
S5: consumer execute counter = register2 {count = 4}

• No problems if there is a strict alternation of the consumer
and producer processes !!!

Problems with Bounded-Buffer with Counter
!!
- Concurrent access to shared data may result in data inconsistency. !
- Maintaining data consistency requires mechanisms to ensure the orderly
execution
 of cooperating processes. !
 - The statements:

o counter = counter +1;

o counter = counter 1;
 
must be executed atomically.

Atomically: If one process is modifying counter the other process must wait, that is, as if this
 is executed sequentially.

!
!
!

!
The Critical Section Problem
The Problem with Concurrent Execution

• Concurrent processes (or threads) often need access to shared data and shared resources.
• If there is no controlled access to shared data, it is possible to obtain an inconsistent view

of this data.
• Maintaining data consistency requires mechanisms to ensure the orderly execution of

cooperating processes. !
Race Condition: A situation in where several processes access and manipulate data
concurrently and the outcome of execution depends on the particular order in which
the access takes place.
!
- n processes all competing to use some shared data !
- Each process has a code segment, called critical section, in which the shared data is
 accessed. !
- Problem - ensure that when one process is executing in its critical section, no other
 process is allowed to execute in its critical section. !!!
Structure of process Pi !

!
!!!!!!!!!!

!!
Solution Requirements: !
Mutual Exclusion. If process Pi is executing in its critical section, then no other
processes can be executing in their critical sections. !
Progress. If no process is executing in its critical section and there exist some
processes that wish to enter their critical section, then the selection of the processes
that will enter the critical section next cannot be postponed indefinitely. !
Bounded Waiting. A bound must exist on the number of times that other processes
are allowed to enter their critical sections after a process has made a request to enter
its critical section and before that request is granted. !

• Assume that each process executes at a nonzero speed.
• No assumption concerning relative speed of the n processes.

!
Solution to Critical Section Problem

Types of Solutions
• Software solutions

o Algorithms whose correctness does not rely on any assumptions other than
positive processing speed (that may mean no failure).

o Busy waiting.

!
• Hardware solutions

o Rely on some special machine instructions.

!
• Operating system solutions

o Extending hardware solutions to provide some functions and data structure
support to the programmer. !!!!!!

!

SOFTWARE SOLUTION
!
• Only 2 processes, P0 and P1
• General structure of process Pi (other process Pj)

!
• Processes may share some common variables to synchronize their

actions.
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Algorithm 1
!

• Shared variables: -
 
 int turn; //turn can have a value of either 0 or 1 
 //if turn = i, P(i) can enter it's critical
section  !
Process Pi
 do  
 {  
 while (turn != i) /*do nothing*/ ;
 
 critical section
 
 turn = j;
 
 remainder section  
 }  
 while (true)  
 !
Process Pj
 do  
 {  
 while (turn != j) /*do nothing*/ ;
 
 critical section
 
 turn = i;
 
 remainder section  
 }  
 while (true) !

- Mutual exclusion ok.
 
- Bounded waiting ok - each only waits at most 1 go. !
- Progress not good - each has to wait 1 go. P0 gone into its (long) remainder, P1 executes
critical and finishes its (short) remainder long before P0, but still has to wait for P0 to
finish and do critical before it can again.
Strict alternation not necessarily good - Buffer is actually pointless, since never used!
Only ever use 1 space of it.
!
!
!
!

!

Algorithm 2 !!
• Shared variables

boolean flag[2];  
flag[0] = flag[1] = false;  
// if flag[i] == true, P(i) ready to enter its critical
section  

Process P i
do  
 { flag[i]= true;  
 while (flag[j]) /*do nothing*/ ;
 
 critical section
 
 flag[i]=false;
 
 remainder section  
 }  
 while (true)  !

Process P j
do  
 { flag[j]= true;  
 while (flag[i]) /*do nothing*/ ;
 
 critical section
 
 flag[j]=false;
 
 remainder section  
 }  
 while (true) !

• Doesn't work at all. Both flags set to true at start. "After you." "No,
after you." "I insist." etc. !

• Infinite loop.
!
!
!
!
!
!
!
!

!

Algorithm 3

Combined shared variables of algorithms 1 and 2.
 int turn; //turn can have a value of either 0 or 1 
 boolean flag[2]; flag[0] = flag[1] = false; 
 // if flag[i] == true, P(i) ready to enter its critical section 
Process P i

do  
 { flag[i]= true;

 turn = j;  
 while (flag[j] && turn==j) /*do nothing*/ ;

 
 critical section
 
 flag[i]=false;
 
 remainder section  
 }  
 while (true)  !

Process P 0 Process P 1 !
do do
{ flag[0]= true; {flag[1]= true;
 turn = 1; turn = 0;
 while (flag[1] && turn==1) while flag[0] && turn==0)
 /*do nothing*/ ; /*do nothing*/ ; !
 critical section critical section
 
 flag[0]=false; flag[1]=false; !
 remainder section remainder section 
 
 } while (true) } while (true)  

• Meets all three requirements; solves the critical section problem for two
processes. !

• "flag" maintains a truth about the world - that I am at start/end of critical. "turn"
is not actually whose turn it is. It is just a variable for solving conflict if two
processes are ready to go into critical. They all give up their turns so that one
will win and go ahead. !

• e.g. flags both true, turn=1, turn=0 lasts, P0 runs into critical, P1 waits.  
Eventually P0 finishes critical, flag =false, P1 now runs critical, even though turn is still 0.  
Doesn't matter what turn is, each can run critical so long as other flag is false. Can run at different
speeds.  !

• If other flag is true, then other one is either in critical (in which case it will exit,
you wait until then) or at start of critical (in which case, you both resolve
conflict with turn). !

Note the problem with software solution is the busy waiting, the cpu is used just to
make each process wait for nothing and make the cpu busy while the process is not
doing anything.

!
Bakery Algorithm(READ IT-ONLY) !
Introduction
This algorithm solves the critical section problem for n processes in software. The basic idea is that of
a bakery; customers take numbers, and whoever has the lowest number gets service next. Here, of
course, "service" means entry to the critical section. !
Critical section for n processes

• Generalization for n processes.
• Each process has an id. Ids are ordered.
• Before entering its critical section, process receives a number. Holder of the smallest number

enters the critical section.
• If processes P i and P j receive the same number, if i < j , then P i is served first; else P j is

served first.
• The numbering scheme always generates numbers in increasing order of enumeration; i.e.,

1,2,3,3,3,3,4,5...
• Notation <= lexicographical order (ticket #, process id #)

o (a,b) < (c,d) if a < c or if a = c and b < d
o max(a0, . . . , an-1) is a number, k , such that k >= ai for i = 0, . . . , n - 1

• Shared data
1 boolean choosing[n]; //initialise all to false  
2 int number[n]; //initialise all to 0  

 3 do  
 4 { choosing[i] = true;  
 5 number[i] = max(number[0], number[1], ...,number[n-1]) + 1;  
 6 choosing[i] = false;  
 7 for(int j = 0; j < n; j++)  
 8 { while (choosing[j]== true)
 9 /*do nothing*/  
 10 while ((number[j]!=0) && (number[j],j)< (number[i],i))
 11 /*do nothing*/  
 12 }  
  
 13 critical section
  
 14 number[i] = 0;
  
 15 remainder section
  
 } while (true)  
 !
Comments
lines 1-2: Here, choosing[i] is true if Pi is choosing a number. The number that Pi will
use to enter the critical section is in number[i]; it is 0 if Pi is not trying to enter its
critical section.
lines 4-6: These three lines first indicate that the process is choosing a number (line
4), then try to assign a unique number to the process Pi (line 5); however, that does
not always happen. Afterwards, Pi indicates it is done (line 6).
lines 7-12: Now we select which process goes into the critical section. Pi waits until
it has the lowest number of all the processes waiting to enter the critical section. If

two processes have the same number, the one with the smaller name - the value of
the subscript - goes in; the notation "(a,b) < (c,d)" means true if a < c or if both a = c
and b < d (lines 9-10). Note that if a process is not trying to enter the critical section,
its number is 0. Also, if a process is choosing a number when Pi tries to look at it, Pi
waits until it has done so before looking (line 8).
line 14: Now Pi is no longer interested in entering its critical section, so it sets
number[i] to 0. !!
Drawbacks of Software Solutions
!

§ Complicated to program
§ Busy waiting (wasted CPU cycles
§ It would be more efficient to block processes that are waiting (just as if they had

 requested I/O). !!!!!!!!!!!!!!!!!!
!
!
!
!
!
!
!
!
!
!

HARDWARE SOLUTION
Hardware Solution Disable Interrupts
On a uni-processor, you can get mutual exclusion by locking out interrupts. Observations:

- You can only afford to do this for a little while, so you don't lose any interrupts (of course in
 general you don't want to protect expensive things with spin locks).
- Nothing else works if you're sharing memory with a device you sure can't use a spin lock!
 (DEADLOCK).
- Correct solution for a uni-processor machine, but this doesn't work on multiprocessors, the
 solution is not correct.
- During critical section multiprogramming is not utilized - performance penalty. !

Repeat
 disable interrupts
 critical section
 enable interrupts
 remainder section
Forever !

Hardware Solution Test and Set
Use better (more powerful) atomic operations: !

• Test and modify the content of a word atomically. !
boolean Test_and_Set(Boolean & target)  

 {boolean test = target;  
 target = true;
 return test;  
 }

• Shared data: boolean lock = false;
!

 Process Pi
 do  
 { while (Test-and-Set(lock))
 /*do nothing*/ ;  
 critical section
 lock = false;
 remainder section
 }while (true) !!!!!!!!!!!!!!!

OPERATING SYSTEM SOLUTION
!
!
Semaphores
!
!

Semaphore: wait and signal
!
!
 

! !
!

 Semaphore S - integer variable
 - can only be accessed via two indivisible (atomic) operations
 S =1

 wait(s) : while (S<=0) /*do nothing*/ ;  
 S = S-1;
 
 signal(S) : S = S + 1;  !!

 mutex : semaphore =1;
 Repeat
 wait(mutex);
 critical section
 signal(mutex);
 remainder section
 Forever !
Semaphore Implementation

• Define a semaphore as a record/structure
 struct semaphore  
 { int value;  
 List *L; //a list of processes  
 }  

• Assume two simple operations:
o block suspends the process that invokes it.
o wakeup(P) resumes the execution of a blocked process P.

• Semaphore operations now defined as
 wait(S)  
 { S.value = S.value -1;  
 if (S.value <0)  
 { add this process to S.L;  
 block;  
 }
 }  !
 signal(S)  
 { S.value = S.value + 1;  
 if (S.value <= 0)  
 { remove a process P from S.L;  
 wakeup(P);  
 }  
 } !!!!!!!!!!

Classical Problems of Synchronization !!
§ Bounded Buffer Problem !
§ Readers and Writers Problem !
§ Dining Philosophers Problem

!!!
Bounded Buffer Problem !

• Shared data
 char item; // could be any data type 
 char buffer[n];  
 semaphore full = 0; // counting semaphore 
 semaphore empty = n; // counting semaphore 
 semaphore mutex = 1; // binary semaphore 
 char nextp, nextc;  

• Producer process
 do  
 { produce an item in nextp  
 wait (empty);  
 wait (mutex);  
 add nextp to buffer //Critical section  
 signal (mutex);  
 signal (full);  
 }  
 while (true) !

• Consumer process
 do  
 { wait(full);  
 wait(mutex);  
 remove an item from buffer to nextc  
 signal(mutex);  
 signal(empty);  
 consume the item in nextc;  
 }  !!!!!!!!!!!!!!!!!!!!!!!!!!

Readers-Writers Problem !
• Shared data

 semaphore mutex = 1;  
 semaphore wrt = 1;  
 int readcount = 0;  

• Writer process
 wait(wrt);  
 writing is performed  
 signal (wrt);  

• Reader process
 wait (mutex);  
 readcount = readcount + 1;  
 if (readcount ==1)  
 wait (wrt);  
 signal (mutex);  
 reading is performed  
 wait(mutex);  
 readcount = readcount - 1;  
 if (readcount == 0)  
 signal (wrt);  
 signal (mutex);  
 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

diagram

Dining Philosopher Problem !
• Shared data

 semaphore chopstick[5];  
 chopstick[] = 1;  

• Philosopher i:
 do  
 { wait (chopstick[i]);  
 wait (chopstick[i+1 mod 5]);  
 eat;  
 signal (chopstick [i]);  
 signal (chopstick [i+1 mod 5]);  
 think;  
 }  
 while (true) !!!!

 !
 !

!!!!!!
Problem: DeadLock !!!!!!!!!!!!!

3

1
2

4

0

!!!
Chapter 7 !

DEADLOCKS
!!!
- System Model
- Deadlock Characterization
- Methods for Handling Deadlocks
- Deadlock Prevention
- Deadlock Avoidance
- Deadlock Detection
- Recovery from Deadlock
- Combined Approach to Deadlock Handling !!
The Deadlock Problem !
* A set of blocked processes each holding a resource and waiting to acquire a resource
 held by another process in the set.
A deadlock state is simply a set of blocked processes each process is holding (reserving)
some resources and waiting for other processes to release their resources and so on. !
* Example !
- System has 2 tape drives.
- P 1 and P 2 each hold one tape drive and each needs another one. !!
Full cycle

 !
 !!!!

 !!!!

PR1

PR2

P1
P2

Assigned

Request
Assigned

Request

Example: bridge crossing !
- Traffic only in one direction. !
- Each section of a bridge can be viewed as a resource. !
- If a deadlock occurs, it can be resolved if one car backs up (preempt resources
 and rollback). !
- Several cars may have to be backed up if a deadlock occurs. !
- Starvation is possible. !
Solution: give priority to one direction, but this will make starvation possible
Another solution: Alternating direction priority, but still not 100% solution. !!
System Model !
* Assume Resource types R 1 , R 2 , ..., R µ-1 :
 CPU cycles, memory space, I/O devices !
* Each resource type R i has W i instances (Wi number of instances from resource type Ri).
R7 = Hard Disk
W7 = 25
We have 25 Hard Disk !
* Each process utilizes a resource as follows:
 - request
 - use
 - release !!
Deadlock Characterisation−deadlock can arise if four conditions hold simultaneously.
Necessary Conditions for a deadlock to occur:
- Mutual exclusion: only one process at a time can use a resource.(No sharing) !
- Hold and wait: a process holding at least one resource is waiting to acquire
 additional resources held by other processes. !
- No preemption: a resource can be released only voluntarily by the process holding
 it, after that process has completed its task. !
- Circular wait: there exists a set {P 0 , P 1 , ..., P n } of waiting processes such that
 P 0 is waiting for a resource that is held by P 1 , P 1 is waiting for a resource that is
 held by P 2 , ..., P n -1 is waiting for a resource that is held by P n , and P n is
 waiting for a resource that is held by P !

!!!
Resource-Allocation Graph − a set of vertices V and a set of edges E. !
(*) V is partitioned into two types:
 - P ={P 1 ,P 2 , ..., P n }, the set consisting of all the processes in the system. !
 - R ={R 1 ,R 2 , ..., R m }, the set consisting of all resource types in the system. !
(*) request edge − directed edge P i → R j !
(*) assignment edge − directed edge R j → P i !
 !!
 !!!
 !
 !!!

 !!!

 !
 !!
Example !
- Process !!!!
- Resource type with 4 instances !!

PR1

PR2

P1 P2

Assigned

Request

Assigned

Request

P1 P1

P1

.!

.
.!
 .!
. .!

.

!!!
- P i requests instance of R j !!!!
- P i is holding an instance of R j !!!!!!
 Example of a resource-allocation graph with no cycles. !!!!!!!!!!!!!
Example of a resource-allocation graph with a cycle. !!!!!!!!!!
(*) If graph contains no cycles ⇒ no deadlock. !
(*) If graph contains a cycle ⇒	
!
 - if only one instance per resource type, then deadlock.

 - if several instances per resource type, possibility of deadlock. !

!
Methods for Handling Deadlocks !
- Ensure that the system will never enter a deadlock state. !
- Allow the system to enter a deadlock state and then recover. (preemption) !
- Ignore the problem and pretend that deadlocks never occur in the system; used by
 most operating systems, including UNIX. !!
Deadlock Prevention − restrain the ways resource requests can be made.
the idea is to make sure at least one of the 4 necessary conditions must not hold.
* Mutual Exclusion − not required for sharable resources; must hold for nonsharable
 resources. !
* Hold and Wait − must guarantee that whenever a process requests a resource, it
 does not hold any other resources. !
 - Require process to request and be allocated all its resources before it begins
 execution, or allow process to request resources only when the process has none. !
 - Low resource utilization; starvation possible. !
* No Preemption −	
!
- If a process that is holding some resources requests another resource that cannot be
 immediately allocated to it, then all resources currently being held are released. !
- Preempted resources are added to the list of resources for which the process is
 waiting. !
- Process will be restarted only when it can regain its old resources, as well as the new
 ones that it is requesting. !
* Circular Wait − impose a total ordering of all resource types, and require that each
 process requests resources in an increasing order of enumeration. !
Deadlock prevention tries to ensure one of the 4 necessary conditions do not hold in order to
prevent a deadlock state. A side effect of a deadlock prevention:
1. low device utilization
2. reduce system throughput. !!!!!

Deadlock Avoidance − requires that the system has some additional a priori
 information available.
The operating makes sure the system will never enters a deadlock state
Def: A safe sequence is a sequence of processes {P0,P1,P2,P3,P4,Pn-1} such that process Pi
request oaf resources can be satisfied by:
The currently available resources + the resource released
by process j such that j<i
Def: If there such safe sequence, there no deadlock, otherwise the sequence is unsafe and a
deadlock might occur.
(*) Simplest and most useful model requires that each process declare the maximum
 number of resources of each type that it may need. !
(*) The deadlock-avoidance algorithm dynamically examines the resource-allocation
 state to ensure that there can never be a circular-wait condition. !
(*) Resource-allocation state is defined by the number of available and allocated
 resources, and the maximum demands of the processes. !!!!!
Safe State − when a process requests an available resource, system must decide if
 immediate allocation leaves the system in a safe state. !
(*) System is in safe state if there exists a safe sequence of all processes. !
(*) Sequence <P 1 , P 2 , ..., P n > is safe if for each P i , the resources that P i can
 still request can be satisfied by the currently available resources plus the resources
 held by all the P j , with j < i. !
- If P i resource needs are not immediately avail-able, then P i can wait until all P j
 have finished. !
- When P j is finished, P i can obtain needed resources, execute, return allocated
 resources, and terminate. !
- When P i terminates, P i +1 can obtain its needed resources, and so on. !!!!
(**) If a system is in safe state ⇒ no deadlocks. !
(**) If a system is in unsafe state ⇒ possibility of deadlock. !
(**) Avoidance ⇒ ensure that a system will never enter an unsafe state.

example:
A system with 12 tape drivers and 3 processes

the available tape driver w=3
solution
at this time the sequence <P1,P0,P2> is a safe sequence !
example 2:
assume p2 requested an additional tape driver OS granted !

is the sequence safe
solution
no it is not !!
Resource-Allocation Graph Algorithm !
(*) Claim edge P i → R j indicates that process P i may request resource R j ;
 represented by a dashed line. !
(*) Claim edge converts to request edge when a process requests a resource. !
(*) When a resource is released by a process, assignment edge reconverts to a claim
 edge. !
 (*) Resources must be claimed a priori in the system. !!!
Banker’s Algorithm (Avoidance Algorithm)
The algorithm takes the flowing in consideration:
1. for simplicity we will consider only one resource type, but this can be generalised to more
than one resource type
2. each process must declare the max needs from the beginning
3. when a process requests a resource it may have to wait
4. when a process gets all it’s resources it must return them in a finite amount of time

Process Max needs Allocated now Current needs

P0 10 5 5

P1 4 2 2

P2 9 2 7

Process Max needs Allocated now Current needs

P0 10 5 5

P1 4 2 2

P2 9 2 3 7 6

(*) Multiple resource types. !
(*) Each process must a priori claim maximum use. !
(*) When a process requests a resource it may have to wait. !
(*) When a process gets all its resources it must return them in a finite amount of time. !!!
 Data Structures for the Banker’s algorithm where:
 n = number of processes, and m = number of resource types.
Array MAX has the max numbers of each process
MAX[i] = k means process Pi needs a maximum k instances of the resources
Array Allocaation
Allocation[i] = k means process Pi is currently allocated k instances of the resources
Array Need
Need[i] = k means process Pi needs k more instances of the resources
 Available = w is how many recourses
- Available: Vector of length m. If Available[j] = k, there are k instances of resource
 type R j available. !
- Max: n × m matrix. If Max[i,j]=k, then process P i may request at most k instances
 of resource type R j . !
- Allocation: n × m matrix. If Allocation[i,j]=k, then P i is currently allocated k
 instances of R j . !
- Need: n × m matrix. If Need[i,j]=k, then P I may need k more instances of R j to
 complete its task. Need[i,j]=Max[i,j] − Allocation[i,j]. !!!!!
Safety Algorithm !
1. Let Work and Finish be vectors of length m and n, respectively.
 Initialize:

Work := Available
Finish[i]:=false for i = 1, 2, ..., n. !

2. Find an i such that both:
a. Finish[i]=false
b. Need i ≤ Work

If no such i exists, go to step 4. !

3. Work := Work + Allocation i
Finish[i]:=true

go to step 2. !
4. If Finish[i]=true for all i, then the system is in safe state. !
May require an order of m × n 2 operations to decide whether a state is safe. !!
1. k array of integers.
 Initialize:

w = Available
k[i]:=1 for i = 1, 2, ..., n. !

2. Find an i such that both:
a. k[i]=1
b. Need[i]≤ w

If no such i exists, go to step 4. !
3. w= w + Allocation [i]

k[i]:=0
go to step 2. !
4. If k[i]=0 for all i, then the system is in safe state. !!!
Resource-Request Algorithm for process P i !
Request i = request vector for process P i . f Request i [j] = k , then process P i wants
K nstances of resource type R j . !
1. If Request i ≤ Need i , go to step 2. Otherwise, aise error condition, since process
 has exceeded its maximum claim. !
2. If Request i ≤ Available, go to step 3. Other-wise, P i must wait, since resources are
 not available. !
3. Pretend to allocate requested resources to P I by modifying the state as follows: !

Available := Available − Request i ;
Allocation i := Allocation i + Request i ;
Need i := Need i − Request i ; !

 - If safe ققthe resources are allocated to P i .
 - If unsafe ⇒ P i must wait, and the old resource-allocation state is restored. !

!!!!!!!
Example of Banker’s algorithm !
(*) 5 processes P 0 through P 4 ; 3 resource types A (10 instances), B (5 instances),
 and C (7 instances). !
(*) Snapshot at time T 0 : !

Allocation Max Available Need
------------- ------ ----------- -------
A B C A B C A B C AB C

P 0 0 1 0 7 5 3 3 3 2 7 4 3
P 1 2 0 0 3 2 2 1 2 2
P 2 3 0 2 9 0 2 6 0 0
P 3 2 1 1 2 2 2 0 1 1
P 4 0 0 2 4 3 3 4 3 1 !

(*) Sequence <P 1 , P 3 , P 4 , P 2 , P 0 > satisfies safety criteria. !!!
(*) P 1 now requests resources.

Request 1 = (1,0,2). !
- Check that Request 1 ≤ Available (that is,
 (1,0,2) ≤ (3,3,2)) ==> true !

Allocation Need Available
A B C A B C A B C

P 0 0 1 0 7 4 3 2 3 0
P 1 3 0 2 0 2 0
P 2 3 0 2 6 0 0
P 3 2 1 1 0 1 1
P 4 0 0 2 4 3 1 !

- Executing safety algorithm shows that sequence <P 1 , P 3 , P 4 , P 0 , P 2 >
 satisfies safety requirement. !
(*) Can request for (3,3,0) by P 4 be granted? !
(*) Can request for (0,2,0) by P 0 be granted?

//HE DID NOT EXPLAIN(START)
Deadlock Detection !
(*) Allow system to enter deadlock state !
(*) Detection algorithm !
(*) Recovery scheme !!!!!!
Single Instance of Each Resource Type !
(*) Maintain wait-for graph !

- Nodes are processes.
- P i ---> P j if P i is waiting for P j . !

(*) Periodically invoke an algorithm that searches for a cycle in the graph. !
(*) An algorithm to detect a cycle in a graph requires n order of n 2 operations, where
 n is the number of vertices in the graph. !!!!!
Several Instances of a Resource Type !!
(*) Data structures !
- Available: A vector of length m indicates the number of available resources of each
 type. !!
- Allocation: An n × m matrix defines the number of resources of each type currently
 allocated to each process. !!
- Request: An n × m matrix indicates the current request of each process.
 If Request[i,j]=k, then process P i is requesting k more instances of
 resource type R j . !!

diagram

!!!
Detection Algorithm !
1. Let Work and Finish be vectors of length m and n, respectively. Initialize: !
- Work := Available.
- For i = 1, 2, ..., n,
 if Allocation i ,
 then Finish[i]:=false;
 otherwise, Finish[i]:= true. !
2. Find an index i such that both: !

a. Finish[i]=false.
b. Request i ≤ Work. !

If no such i exists, go to step 4. !
3. Work := Work + Allocation i
 Finish[i]:=true !
go to step 2. !
4. If Finish[i] = false, for some i, 1 ≤ i ≤ n, then the system is in a deadlock state.
 Moreover, if Finish[i]=false, then P i is deadlocked. !
(*) Algorithm requires an order of m × n 2 operations to detect whether the system is
 in a deadlocked state. !!!!
Example of Detection algorithm !
(*) Five processes P 0 through P 4 ; three resource types A (7 instances),
 B (2 instances), and C (6 instances). !
(*) Snapshot at time T 0 : !

Allocation Request Available
A B C A B C A B C

P 0 0 1 0 0 0 0 0 0 0
P 1 2 0 0 2 0 2
P 2 3 0 3 0 0 0
P 3 2 1 1 1 0 0

diagram

P 4 0 0 2 0 0 2 !
(*) Sequence <P 0 , P 2 , P 3 , P 1 , P 4 > will result in Finish[i] = true for all i. !!!!!
(*) P 2 requests an additional instance of type C. !

Request

A B C

P 0 0 0 0
P 1 2 0 2
P 2 0 0 1
P 3 1 0 0
P 4 0 0 2 !

(*) State of system? !
 - Can reclaim resources held by process P 0 , but insufficient resources to fulfill other
 processes’ requests. !
- Deadlock exists, consisting of processes P 1 , P 2 , P 3 , and P 4 . !!!!
Detection-Algorithm Usage !
(*) When, and how often, to invoke depends on: !

- How often a deadlock is likely to occur? !
 - How many processes will need to be rolled back?

 one for each disjoint cycle !
(*) If detection algorithm is invoked arbitrarily, there may be many cycles in the
 resource graph and so we would not be able to tell which of the many deadlocked
 processes‘‘caused’’ the deadlock. !!
Recovery from Deadlock !
(*) Process termination !
 - Abort all deadlocked processes.

diagram

!
- Abort one process at a time until the deadlock cycle is eliminated. !!!
- In which order should we choose to abort? !

* Priority of the process.
* How long process has computed, and how much longer to
 completion.
* Resources the process has used.
* Resources process needs to complete.
* How many processes will need to be terminate
* Is process interactive or batch? !!!!

(*) Resource Preemption !
- Selecting a victim − minimize cost. !
- Rollback − return to some safe state, restart process from that state. !
- Starvation − same process may always be picked as victim; include number
 of rollback in cost factor. !!!

Combined Approach to Deadlock Handling !
(*) Combine the three basic approaches (prevention, avoidance, and detection),
 allowing the use of the optimal approach for each class of resources in the system. !
(*) Partition resources into hierarchically ordered classes. !
(*) Use most appropriate technique for handling deadlocks within each class. !!!
//HE DID NOT EXPLAIN(END) !!!!!!!

diagram

!!!!!!!!!!
Chapter 8

!
Memory Management !

Introduction & Background !
(*) Recall: Memory is an array of words, each with an address. CPU fetches
 instructions and store results from/to memory
(*) Program must be brought into memory (limited) as a process for execution. (We assume
all the program must be brought into memory before execution starts) !
(*) Job queue - collection of processes on the disk that are waiting to be brought
 into memory for execution. !
(*) In this chapter, we assume the whole program must be in memory for execution. !
(*) Except paging, we assume the program must reside contiguously in memory. !!
Logical-Virtual-(LA) versus Physical(PA) Address Space !
(*) The concept of a logical address space that is bound to a separate physical address
 space is central to proper memory management.
 - Logical address - generated by the CPU; also referred to as virtual address.
 - Physical address – address seen by the memory unit. !
(*) Logical and physical addresses are the same in compile-time and load-time
 address-binding schemes; logical (virtual) and physical addresses differ in
 execution-time address-binding scheme.
 PA
 LA

Your
Program

Memory !!
———— !!!
————

!
Memory-Management Unit (MMU)hardware device that maps virtual to physical
 address. !
(*) In MMU scheme, the value in the relocation register is added to every address
 generated by a user process at the time it is sent to memory. !
(*) The user program deals with logical addresses; it never sees the real physical
 addresses.
(*) Address binding of instructions and data to memory addresses can happen at
 three stages: (At what time of execution PAs are assigned to LAs) !

Compile time: If memory location known a priori, absolute code can be
 generated; must recompile code if starting location changes.
 Not practical in general purpose OS

 Load time: Must generate relocatable code if memory location is not known at
 compile time. (relocatable for example address 14 from the beginning
 of the program).
 This ok, but theOS can’t move the program during execution. !
 Execution time: Binding delayed until run time if the process can be moved
 during its execution from one memory segment to another.
 Need hardware support for address maps (e.g., base and
 limit registers).
 Which the program can change it’s location during execution !!!!!!!!!!!!!!!!!!!!!

Contiguous Allocation – Multiple Partitions !
- Program resides contiguously in memory
- Memory is divided into a number of regions(partitions). (have not to be equaled in

size)
- When a region becomes free, a process is loaded into it.
- Each program os loaded into one region only
- Hardware: base and limit registers. !!

Base register : the address of the beginning of the region
Limit register : the number of the size of the region !!!!!!!!!!!!!

 !

 !!!
 !

 LA T PA !
 !!!

 F !!!!
PA=LA+Base Register !

OS

Region 1 !
Region 2

Region 3 !!!!
Region 4 !!

CPU <=

Limit register Base register

+

Memory Fault

!
Fixed Regions !
(*) Memory is divided into a fixed number of regions(partitions), with fixed - not necessary
equally- sizes.
(*) Degree of multiprogramming(number of executing programs in the memory) is
bounded by the number of regions.
(*) Job scheduling:
 (a) Each region has a separate queue , usually FCFS.
 (b) Only one queue of waiting jobs:
 - FCFS with or without skip.
 - Best fit only
 - Best available fit.
(*) Problems:
 - Selection of regions sizes.
 - What if one job is very big.
 - Internal fragmentation. the remaining unused space in the region
 - External fragmentation. the regions that are not used (usually with small regions).
(*) Example: IBM OS/360
 (called MFT : Multiprogramming with Fixed number of Tasks) !!!!!!
Variable(Dynamic) Regions MVT - Multiprogramming with Variable number
of Tasks) !
(*) Memory is a set of:

(a) Allocated regions .
(b) Holes : block of available memory; holes of various size are scattered
 throughout memory. !

(*) When a process arrives, it is allocated memory from a hole large enough to
 accommodate it. !!
Example: Assume the following system load:
Given the following job queue:

Process Memory Time

P1 600MB 10

P2 1000MB 5

P3 300MB 20

P4 700MB 8

P5 500MB 15

!
Assume we have 2560MB and the OS takes 400MB
At T=0

!
At T=5

!!
(*) Operating system maintains information about:
 - allocated partitions
 - free partitions (hole)
(*) Hardware Needed: base and limit registers. !
(*) Question: how to satisfy a request of size n from a list of free holes.
 - First-fit: Allocate the first hole that is big enough.

- Best-fit: Allocate the smallest hole that is big enough; must search entire list,
 unless ordered by size. Produces the smallest leftover hole.

 - Worst-fit: Allocate the largest hole; must also search entire list. Produces the
 largest leftover hole.
(*) First-fit and best-fit better than worst-fit in terms of speed and storage utilization. !
(*) Problems: !
 - External fragmentation - total memory space exists to satisfy a request,
 but it is not contiguous.

OS 400

P1 1000

P2 2000

P3 2300

EMPTY 260MB

OS 400

P1 1000 (Allocated region)

P4 1700 (Allocated region)

EMPTY 2000 (external
fragmentation)

P3 2300 (Allocated region)

EMPTY 256 (external fragmentation)

 Solution :Compaction , possible only if relocation is dynamic, and is done at
 execution time.
 - Internal fragmentation - allocated memory may be slightly larger than
 requested memory. !
Noncontiguous Allocation – Paging !
(*) Logical address space of a process can be noncontiguous; process is allocated
 physical memory wherever the latter is available.
(*) Divide physical memory into fixed-sized blocks called frames (size is power of 2,
 between 512 bytes and 8192 bytes).
(*) Divide logical memory into blocks of same size called pages. page size = frame size
(*) Keep track of all free frames.
(*) To run a program of size n pages, need to find n free frames and load program.
(*) Set up a page table to translate logical to physical addresses.
(*) Internal fragmentation.
(*) Address generated by CPU is divided into:

- Page number (p) - used as an index into a page table which contains
 base address of each page in physical memory.
- Page offset (d) - combined with base address to define the physical memory
 address that is sent to the memory unit.
- Page Size(s) ! ! !!

OS

1000 C

1001

1002

1003 D

1004

1005

1006 A

1007

…

25675

25676

25677 B

25678

25679

25680

0 A

1 B

2 C

3 D

0 1006

1 25677

2 1000

3 1003

PAGE TABLEPROGRAM (PAGES)
Memory

!! !!

!!!!!!!!!!
(*) Calculation of physical address:
 LA = logical address , S = page size , then ,
 p = LA div S
 d = LA mod S !
(*) In practice, the OS takes advantage of the page size being 2n ,
 the low-order n bits equal d and the remaining bits equal p. !
Assume page size s = 256 = 2^8
given LA=800
p = 800 / 256 = 3 = 0011
d = 800 % 256 = 32 = 00100000
Assume LA length in bits 12 !
!

0 0 1 1 0 0 1 0 0 0 0 0

CPU
P d

S*F+d=PA

0 1006

P F

1 1000

3 1003

PAGE TABLE

LA

p (4 bits) d (8 bits)

!
(*) Examples :
 DEC-10 : LA 20 bits ; page size is 512 ; page no. bits 11 ; page offset 9 bits.
 IBM-370: LA 24 bits ; page size is 2048 ; page no. bits 13 ; page offset 11 bits.
(*) Disadvantage :Separation between user’s view of memory and actual physical
 memory reconciled by address-translation hardware; logical addresses are
 translated into physical addresses. !
(*) Advantages: Sharing pages. !
Active page table has the page table for the process is currently running (has the CPU)
In context switch:
the active page table is stored back to the page in the PCB for the interrupted process, and the
page table for the new process is reloaded into the active page table
that is the active page table is flushed !
Implementation of page table(Active page table)

(*) Each job has its own page table which is usually kept in the PCB. !
(*) Hardware implementation (Where the active table stored/located):

1. A set of dedicated registers, that is loaded and stored by the CPU dispatcher
 during program execution like program counter(pc).

 Example: PDP-11 : LA = 16 bits ; page size = 8192 = 213 ; leaving 3 bits or 8
 Entries for the page table.
 Suitable if the page table is small (up-to 256 entries) (Only small size tables - There is
no register big enough) !
 2- Page table is kept in main memory.
 - Page-table base register (PTBR) points to the page table.
 - Page-table length register (PTLR) indicates size of the page table.
 - In this scheme every data/instruction access requires two memory accesses.
 One for the page table and one for the data/instruction. !
 3- The two memory access problem is solved using special fast hardware cache,
 called associative registers or Translation Look-aside Buffers (TLBs).
(Mixing between the previous two) !!!!!!!! !!

!! !

!!!!!!!!!
- A set of high speed registers are used(associative registers).
- Each entry contains (page # , frame #).
- Associative registers contain only few page-table entries.
- When CPU generates an address, p is first checked in the associative registers. If
 found, then its frame f is used immediately. Otherwise, the page table in memory
 is used, and the (page # , frame #) is added to the associative registers table.
- Every context-switch, associative registers are flushed for the new process.

 - Hit ratio - percentage of times that a page number is found in the associative
 registers; ratio related to number of associative registers.
 - Effective Access Time (EAT) :
 associative registers lookup = t time unit
 assume memory cycle time - 100 nanoseconds
 hit ratio = h

CPU

P d
S*F+d=PA

0 1006

P F

1 1000

3 1003

Associative
Registers

LA

F

Page Table in
Memory

!
 EAT= (100 + t) h +(200 +t)(1 -h) !
t = search (look up) time in the associative registers
m = memory access
h = hit ratio(probability the desired page in the associative register) 0<= h <= 1 !
EAT= h*(t+m)+(1-h)*(t+2m) !
 Example:
 t = 20 nanoseconds , h = 90 % !
 EAT = (100+20)*0.9 + (200+20)*0.1 = 120*0.9 + 220 * 0.1
 = 108 + 22 = 130 nanoseconds. !!!
Memory Protection !
(*) Memory protection implemented by associating protection bits with each frame. !

 (1) Legal - Illegal bit attached to each entry in the page table:
 - ‘‘legal’’ indicates that the associated page is in the process’ logical address
 space, and is thus a legal page.

 - ‘‘illegal’’ indicates that the page is not in the process’ logical address space. !

!
 (2) Read-write bit attached to each entry in the page table:
 It indicates whether the page is a read only or read/write page to protect the
 page from modifications and rewritten if it is a read only page. !!

!!!!

Frame # Legal/Illegal bit

F 1

0

0

Frame # Legal/Illegal bit R/W bit

F 1

EMPTY 0

EMPTY 0

!
Multilevel Paging !
(*) Modern Computers support a very large logical address space (232 – 264) and the page
table becomes very large. !
(*) Partitioning the page table allows the operating system to leave partitions unused until a
process needs them. !
A two-level page-table scheme !!!!!!!
Example 1: !
 32 bits logical address ; 4k=212 page size ; 20 bits for page no.
 If every page table entry is 4 bytes , then page table size = 4 * 220 = 4 MB
and this is too large to store contiguously in memory. !
Solution: use two level of page table. !
 * Since the page table is paged, the page number is further divided into:
 - a 10-bit page number.
 - a 10-bit page offset.
 * Thus, a logical address is as follows: !!!! !

!!!!

CPU
P1

d S*F+d=PA

P1 1006

P F

1000

1003

OUTER PAGE TABLE

LA

P2

0 address

P1 address

1 address

3 address

INNER
PAGE TABLE

{P2

!
(*) Multilevel paging and performance !

Since each level is stored as a separate table in memory, converting a logical address
to a physical one may take four memory accesses.
- One level requires two memory access.
- Two levels require three memory access.
- Three level requires four memory access.
Even though five memory access time are needed , caching permits
 Performance to remain reasonable.

 Cache hit rate of 98 percent yields:
effective access time = 0.98*120 + 0.02*520 = 128 nanoseconds
which is only a 28 percent slowdown in memory access time. !
Example: Assume 2 level page table,
t = 10 millsec
m = memory acces 100 millsec
an associative registers are used in this case and the hit ratio, h=0.95
EAT = h*(t+m)+(1-h)*(t+3m)
EAT = 0.95*(10+100)+(1-0.95)*310 = 120 millsec !!!!!!!!
3 level page table !!!! !

!!!!

CPU
P1

d S*F+d=PA

P3 1006

P F

1000

1003

OUTER PAGE
TABLE 1

LA

P2

0 address

P1 address

1 address

3 address

INNER PAGE TABLE

P2 address

P address

address

address

OUTER PAGE TABLE 2

P3

!!!!!!!
Inverted Page Table (Read by your self) !
(*) Instead of using a page table for each process, the system uses only one page table
 for all frames in memory..
(*) Each page table entry consists of 3 components
 [process-id , page-no , offset]
(*) Hashing table used using process-is & page-no.
(*) EX : IMB 38 ; IBM RISC 6000 ; IBM RT !!!!!!
Noncontiguous Allocation –Segmentation

!

!
!

!
!
!
!
!
!
!
!
!
!
!!

P2

Data
structure (0)

Functions &
procedures

(2)

Stack (3)

Main
program (1)

OS

10000 (3)

15000

1002

22400 (2)

42400

1005

61000 0

65000

…

25675

25676

65000 (1)

66000

25679

25680

Memory

Base Limit

61000 4000

65000 1000

22400 20000

10000 5000

Segment Table

 !!!!!!
 !!!!!!!!!!!!!
Paging separates user’s view of memory from actual memory. But the segmentation
Scheme supports user view of memory. !!!! !!

!!!!!

!!!
S = segment number !
(*) A program is a collection of segments. A segment is a logical unit such as:

CPU S d

B L

61000 4000

65000 1000

22400 20000

10000 5000

B+d=PA

<= (T)OK

(F) NOT OK

CPU
S

d S*F+d=PA

1006

P F

1000

1003

LA

P

0 address

S address

1 address

3 address

Segment Table Page Table

S is page size

 main program
 (subroutines) procedure & function
 global variables
 stack
 symbol table, arrays !!!
(*) Logical address consists of a pair:
 (segment-number , offset). !
(*) Segment table - maps two-dimensional user-defined addresses into one-
 dimensional physical addresses; each entry of table has:
 - base - contains the starting physical address where the segments reside in memory.
 - limit - specifies the length of the segment. !
(*) Segment-table base register (STBR) points to the segment table’s location in
 memory. !
(*)Segment-table length register (STLR) indicates number of segments used by a
 program; segment number s is legal if s < STLR. !!
Noncontiguous Allocation –Segmentation with Paging !
Problem with segmentation: !

- External fragmentation.
- Search time to allocate a segment using first-fit or best-fit. !

Solution:
 Paging the segments. !!!!!
QUESTION: !
What if the program is too big to fit in memory, what to do ? !!
Dynamic Loading - routine is not loaded until it is called. !
 - Better memory-space utilization; unused routine is never loaded.
 - Useful when large amounts of code are needed to handle infrequently occurring
 cases.

 - No special support from the operating system is required; implemented through
 program design. !
Dynamic Linking – linking is postponed until execution time.

 - Small piece of code, stub, used to locate the appropriate memory-resident
 library routine.

 - Stub replaces itself with the address of the routine, and executes the routine.
 - Operating system needed to check if routine is in processes’ memory address. !
Overlays - keep in memory only those instructions and data that are needed at any
 given time.
 - Needed when process is larger than amount of memory allocated to it.
 - Implemented by user, no special support needed from operating system;
 Programming design of overlay structure is complex. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Chapter 9
!

Virtual Memory Management !
Background !
(*) Virtual memory : allows a very large programs to be executed using limited
 memory, i.e. , the logical address space can therefore be much larger than
 physical address space. Dynamic Loading , Dynamic Linking , and Overlays
 are not good an powerful enough to solve this problem. !
(*) Virtual memory : separation of user logical memory from physical memory.
 - Only part of the program needs to be in memory for execution.
 - Need to allow pages to be swapped in and out. !
(*) Virtual memory : can be implemented via:
 - Demand paging
 - Demand segmentation !!
Demand Paging !
When a page is needed, it is brought into memory,
Hardware support we add a bit to the page table called valid/invalid (v/i) bit !
(*) Demand paging is paging with swapping. !
(*) Bring a page into memory only when it is needed.
 - Less I/O needed
 - Less memory needed
 - Faster response
 - More users
(*) Page is needed è reference to it
 - invalid reference è abort
 - not in memory è bring to memory !
Valid-Invalid bit !
(*) With each page table entry a valid-invalid bit is associated
 (1 è in-memory, 0 è not-in-memory) !
(*) Initially valid-invalid bit is set to 0 on all entries. !
(*) During address translation, if valid-invalid bit in page table entry is
 0 è page fault. !

!

!!!!!!!!
Page Fault !
1. The LA address is checked through the page table if it is a valid address , if so,

then reference it , otherwise, trap to OS è page fault. (software interrupt)
2. OS looks at another table copy (in PCB) to decide:
 a) Just an invalid reference è abort the process.
 b) Just not in memory.
3. Get empty frame.
4. Swap page into frame.
5. Reset tables, validation bit = 1. (Update tables)
6. Restart instruction: (Continue execution) !
What happens if there is no free frame? !
(*) Page replacement - find some page (victim) in memory, but not really in use,
 swap it out.

0 A

1 B

2 C

3 D

4 E

5 F

OS

2000

2001 D

2002

2003

2004

2005

2006

2007

2008

2009 A

2010

2011

2012

2013

2014

Page FRAME (V/I) bit

0 2009 1

1 0

2 0

3 2001 1

4 0

5 0
A B C D E FSwap out

Swap in

Logical
Program

Hard Disk

 è algorithm
 è performance - want an algorithm which will result in minimum number
 of page faults.
(*) Same page may be brought into memory several times. !
(*) We could start execution with 0 pages in memory, pure demand paging. !!
Performance of Demand Paging !
(*) Page Fault Rate (probability) 0 ≤ p ≤ 1.0
 if p = 0, no page faults (Ideal)
 if p = 1, every reference is a fault (Worst) !
(*) Effective Access Time (EAT)
 EAT = (1 - p) * memory access
 + p * (page-fault-handling overhead (* updating page table *)
 + [swap page out] (* […] 0 or 1 occurrence *)
 + swap page in)
EAT= (1-p)*m + p*[swap-in page from HD to memory + maybe swap-out from memory to
HD +m(is very small so we can ignore it)]
(*) Example:
 - memory access time = 5 mics

- 50% of the time the page that is being replaced has been modified and
 therefore needs to be swapped out.

 - Swap Page Time = 10 mils = 10,000 mics
 - EAT = (1-p)*memory-access-time + p*(page-fault-handling-time)
 ≅ (1-p)*5 + p (swap-out + swap-in)
 ≅ (1-p)*5 + p (0.5*10000 + 10000)
 ≅ (1-p)*5 + p (15000)
 ≅ 5 + 14995p (in mics)
 ≅ 15000p mics !
(*) This means the memory access time is almost negligible compared to the swap
 time is the major time a
EAT is totally depends on P
Our objective is to min the page fault P
we should elect the victim page to min the swap out rate !
Page Replacement !
(*) we want optimum page replacement time. !
(*) Use modify (dirty) bit to reduce overhead of page transfers - only modified pages
 are written to disk. !!

!

!!
Page-Replacement Algorithms !
(*) Want lowest page-fault rate. - Our objective is to min the number of page faults
happening !
(*) Evaluate algorithm by running it on a particular string of memory references
 (reference string) and computing the number of page faults on that string. !
(*) In all our examples, the reference string is !
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5. !!!
First-In-First-Out (FIFO) Algorithm !
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 !
 - 3 frames (3 pages can be in memory at a time per process) !

!
 9 page faults !
 - 4 frames (4 pages can be in memory at a time per process) !!
 10 page faults !!

Page FRAME (V/I) bit Dirty bit

0 2009 1

1 0

2 0

3 2001 1

4 0

5 0

1 1

2

1

2

3

4

2

3

4

1

3

4

1

2

5

1

2

5

3

2

5

3

4

!
FIFO Replacement - Belady’s Anomaly more frames does not è less page faults !!
Optimal replacement Algorithm !
(*) Replace the page that will not be used for the longest period of time. !
Example: 3 frames !
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 !
 7 page faults !
Example: 4 frames !
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 !
 6 page faults
(*) Problem: How do you know this? Estimate previous history.
(*) Used for measuring how well your algorithm performs. !!
Least Recently Used (LRU) Algorithm !
Replace the page which has not been used for the longest period of time. !
Example: 4 frames !
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 !

 8 page faults !
(*) FIFO : Uses the time when the page has brought into memory.
 OPTR : Uses the time when the page will be used.
 LRU : Uses the recent past history. Replace the page which has not been used
 For the longest period of time. !!
Implementation: !
 (*) Counter implementation

1 1

2

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

5

2

4

3

1

2

3

 - Every page entry has a counter; every time page is referenced through this
 entry, copy the clock into the counter. counter stores the time the page has been
accessed lately.
 - When a page needs to be changed, look at the counters to determine which are
 to change !
(*) Stack implementation
When the page is referenced, the page is pushed on top of all stack.
In this case
Top stack : most recently used
Bottom of stack: least recently used
 -keep a stack of page numbers in a double link form:
 - Page referenced: move it to the top
 requires 6 pointers to be changed
 - No search for replacement !!
LRU Approximation Algorithms
keep in mind:
(*) Reference bit - is added to the page table to indicate if the page is referenced !!

!
 - With each page associate a bit, initially = 0.
 - When page is referenced bit set to 1.
 - Replace the one which is 0 (if one exists). We do not know the order, however. !
(*) Second chance - enhanced reference bit !
 - Need reference bit.
 - Clock replacement.
 - If page to be replaced (in clock order) has reference bit = 1, then: !
 a) set reference bit 0.
 b) leave page in memory.
 c) replace next page (in clock order), subject to same rules. !

Page FRAME (V/I) bit Dirty bit Reference bit

0 2009 1

1 0

2 0

3 2001 1

4 0

5 0

(*)Enhanced second chance
use also the dirty bit in the selection.
(reference bit, dirty bit)
(0,0) (not reference, not dirty) (1) BEST TO CHOOSE (no swap out)
(0,1) (not reference, dirty) (3)
(1,0) (reference, not dirty) (2)
(1,1) (reference, dirty) (4) WORST TO CHOOSE !!
Counting Algorithms

(*) keep a counter of the number of references that have been made to each page.
 - LFU Algorithm: replaces page with smallest count.
 - MFU Algorithm: based on the argument that the page with the smallest
 count was probably just brought in and has yet to be used. !
(*) Page-Buffering Algorithm

 desired page is read into a free frame from the pool before the victim
 is written out.
Always there is a free frame in memory

1. Swap in the desired page in the frame
2. Resume execution
3. Find a victim which will the next free frame !!
(*) Other algorithms : Random Replacement Algorithm !!!!
Allocation of Frames !
Theoretically, the job can start execution with 0 pages in memory, this called “pure Demand
Paging”
(*) Each process needs minimum number of pages. !
Example: IBM 370 - 6 pages to handle !
(*) Two major allocation schemes:
 - fixed allocation
 - priority allocation !!!!

OS

2000

2001 D

2002

2003

2004

2005

2006

2007

2008

2009 A

A B C D E F

Hard Disk

Fixed Allocation !
- Equal allocation
 If 100 frames and 5 processes, give each 20 pages.
- Proportional allocation
 Allocate according to the size of process.
 si = size of process pi
 S = ∑si

 m= total number of frames
 ai = allocation for pi = (si/S)*m !
Example : m =64
 s1 =10
 s2 = 127
 a1 = (10/137)*64 ≅ 5
 a2 = (127/137)*64 ≅ 59 !
Priority Allocation !
- Use a proportional allocation scheme using priorities rather than size.
example: assume 100 frames of memory

p1 gets (5/8)*100
p2 gets (2/8)*100
p3 gets (1/8)*100 !
- If process Pi generates a page fault,
 # select for replacement one of its frames.
 # select for replacement a frame from a process with lower priority number. !
Global versus local allocation - Two types of replacement algorithms !
(*) Global replacement - process selects a replacement frame from the set of all
 frames; one process can take a frame from another. !
(*) Local replacement - each process selects from only its own set of allocated frames.
(interrupted process) !!!!!

Process Priority

P1 5

P2 2

P3 1

Thrashing

OS is busy in swapping due to the low number of frames allocated for the process
(*) If a process does not have ‘‘enough’’ pages, the page-fault rate is very high:
 è low CPU utilization.
 è operating system thinks that it needs to increase the degree of
 multiprogramming.
 è another process added to the system. !
(*) Thrashing ≡ a process is busy swapping pages in and out. !
Demand Segmentation !
used when insufficient hardware to implement demand paging. !
(*) OS/2 allocates memory in segments, which it keeps track of through
 segment descriptors.
(*) Segment descriptor contains a valid bit to indicate whether the segment is
 currently in memory.
 - If segment is in main memory, access continues,
 - If not in memory, segment fault. !!!!

0

22.5

45

67.5

90

Number of allocated frames for the process

page fault rate

Chapter 10 +11+12 !!!
File Concept !
(*) File is: Contiguous logical address space !
(*) Types:
 - Data
 numeric
 character
 binary
 - Program
 source
 object (load image)

 - Documents !!
File Structure !
(*) None - sequence bytes, words
(*) Simple record structure
 - Lines
 - Fixed length
 - Variable length
(*) Complex Structures
 - Formatted document
 - Relocatable load file !
Can simulate last two with first method by inserting appropriate control characters. !!
File Attributes !
- Name - only information kept in human-readable form.
- Type - needed for systems that support different types.
- Location - pointer to file location on device.
- Size - current file size.
- Protection - controls who can do reading, writing, executing.
- Time, date, and user identification - data for protection, security, and usage

 monitoring. !
(*) Information about files are kept in the directory structure, which is maintained
 on the disk, which is called generally, device directory. !

 !!!!!!!
 !!!!!!!
Sector 0 is boot sector
Sector 1 and above are File allocator Table FAT (Device Directory) !
In the case of tapes each label is the device directory. !!!!!
File Operations !
- create
- write
- read
- reposition within file - file seek
- delete
- open(F i) - search the directory structure on disk for entry F i , and move the

content of entry to memory.
- close(F i) - move the content of entry F i in memory to directory structure on disk. !!
Access Methods !
- Sequential Access

read next
 write next

reset
no read after last write
generally no (rewrite) !!

……

Hard Disk

Sector 0
(boot sector) Sector 1 Sector 2 Sector 3 Sector 4

- Direct Access
read n
write n
position to n
read next
write next
rewrite n !

n = relative block number !!
Directory Structures !
(*) The general information kept about directory system are : !
- Name
- Type
- Address(location) the address of the first block in the device directory
- Current length
- Maximum length
- Current position (File Pointer – FP) the address of the current address of the file
- Date last accessed (for archival)
- Date last updated (for dump)
- Owner ID (who pays)
- Protection information (discuss later) !!!
(*) Operations performed on directory: !
- Search for a file
- Create a file
- Delete a file
- List a directory
- Rename a file
- Traverse the file system g Date last accessed (for archival) !!
(*) There are two directory systems: !
- Device Directory : The directory where the physical information generally is kept
 about the files in that device , such as, name, location, position, … etc.
- User File directory (UFD) : The directory where the logical information generally
 is kept about the user files, such as, name, size, date, … etc.
Note: Searching the directory is performed more often (frequently) the data structure user for
the directory must provide quick search in the directory
(*) Both the directory structure and the files reside on .

(*) Backups of these two structures are kept on tapes. !
(*) Device Directory Implementation: !
(1) Linear list :
 - simple to program
 - time-consuming to execute (search time) (Sequential search)
 - Not practical

!
(2) Sorted Linear list:
 - Binary Search
 - time-consuming to execute
 - what if a file added or deleted ?
 - Not a solution

!!
(3) Hash Table - linear list with hash data structure.
 - decreases directory search time
 - collisions − situations where two file names hash to the same location !
(4) Tree Structure. complex to implement !
(*) User File Directory: !
Organize the directory (logically) to obtain: The Criteria we need in UFD structure: !

Name

Sam

xx

AB

comp

Name

AB

comp

Sam

xx

(*) Efficiency - locating a file quickly. quick search
(*) Naming - convenient to users.
 - Two users can have same name for different files.
 - The same file can have several different names (Aliases).
(*) Grouping - logical grouping of files by properties, e.g., all Pascal programs, all
 games,… !!!!
The Structures of the UFD !
(1) Single-Level Directory - a single directory for all users. !

 !!!!!!!!
(*) Naming problem
(*) Grouping problem !!!
(2) Two-Level Directory - separate directory for each user.
 !!!!!!!!!!
(*) Path name
(*) Can have the same file name for different user - NO ALIASING
(*) Efficient searching
(*) No grouping capability !!

F1 F2

U1 U2 U3

!
(3) Tree-Structured Directories !!
 !!
 !!!!!
 !!!!!!!
(*) Efficient searching
(*) Grouping capability
(*) Current directory (working directory)
(*) No aliasing !!!
(4) Acyclic-Graph Directories - have shared subdirectories and files. !
(*) Two different names (aliasing)
(*) If A deletes D ==> dangling pointer. !
Solutions:
- Back pointers, so we can delete all pointers. Variable size records a problem.
- Back pointers using a daisy chain organization.
- Entry-hold-count solution. !!!
Protection !
(*) File owner/creator should be able to control:
 - what can be done
 - by whom !
(*) Types of access

U1 U2 U3

- Read
- Write
- Execute
- Delete
- List

Access Lists and Groups !
(*) Mode of access: read, write, execute
(*) Three classes of users
 RWX

a) owner access 7 1 1 1
 b) group access 6 1 1 0
 b) group access 5 1 0 1 - Teacher thinks book is mistaken, that it is 5 not 6

b) public access 1 0 0 1 !!
(*) Ask manager to create a group (unique name), say G, and add some users to the
 group. !
(*) For a particular file (say game) or subdirectory, define an appropriate access. !!!!!
Disk Structure !
(*) A disk can be viewed as an array of sectors (blocks). !
A sector (block) : smallest addressable unit in the disk. (track , surface , sector)
Sector's size 512 !!!!!!!!!!
 !!!!

……

Sector 0
(boot sector) Sector 1 Sector 2 Sector 3 Sector 4

Hard Disk

 !

 !
 !!!!!!
(*)Each sector has 3-dimensional address (i,j,k)
i = #track(cylinder)
j = #surface
k = #sector
(*)HD is considered as an arroyo of sectors, the OS transfer the 30dim address to one-dim
address
(*)The addressing used us called cylindrical addressing
(*)The OS maps the 3-dim add. to one-dim
(*)The formula for transforming the 3-dim address (i,j,k) to one-dim !!
(*) Given the address (i , j , k) , then , transformation from 3-dim to one-dim !
 b = k + s * (j + i * t)

Where,
 t = number of surfaces (tracks per cylinder)
 s = number of sectors per surface !
example: HD has 1000 track(cylinder), 6 surfaces and the number of sectors per track is 50
sectors
1. given the address (100, 5, 37), convert it to one dim
2. if sector size is 512 byte, compute the size of HD
solution
1. HD size = 6*1000*50*512 =~ 150 MB
b=37+50*(100*6+5) !!
(*) Seek time : time to move the R/W head to a particular track.

(*) Latency time : time to rotate the sector under the R/W head.

(*) Access time = Seek time + latency time + transfer time !

0

1
2

499
500

…

!!
 File-System Structure !
(*) File structure
 - Logical storage unit

- Collection of related information !
(*) File system resides on secondary storage (disks). !
(*) File control block - storage structure consisting of information about a file. !
(*) The logical file must be mapped into the physical storage media (disk) !!
Blocking

Assume sector size 512 bytes we have found a DB fit with record size 200 bytes
left bytes 512-200=112 so wasting percentage =112/512 = 22% !
Blocking: Packing and unpacking a number of logical records into a physical block. !
Blocking factor: The number of logical record packed into a physical block.
Example: the blocking factor is 5
//I did not understand it! !!
Allocation Methods: !
How files are stored in the disk. How disk blocks (sectors) are allocated for a file !
Contiguous Allocation !
(*) each file occupies a set of contiguous blocks on the disk. !
(*) The file is defined by the address of the first block and its length. Location & Length !!!
 !!

Sector 0
(boot sector) Sector 1 Sector 2 Sector 3 Sector 4

Hard Disk

Sector 5 Sector 6
Sector 7
(File start
location)

Sector 8
(File bytes)

Sector 9
(File bytes)

Sector 10
(File bytes)

Sector 11
(File bytes) Sector 12 Sector 13 Sector 14

!
Advantages:
(*) No seek is required to access block (b+1) after block b unless b is last block in
 the cylinder. !
(*) Random and sequential access are supported easily . !
Note: we say the sequential is direct support easy or not depending on how easy or hard to
provide the address of the block to be accessed. !
Sequential addressing:
If FP at block with address n to access next block, we increment n, the address of next block
is n+1 (simple addition operation) !
Direct access: means to access (r/w) block n in the file n is relative address (n is the offset)
that is, means the block with address n in your file.
Example: read block 17
in our example read block 4
address of block #4 = 7 + 4 - 1 = 10
In general:
address of block #n = location + n - 1 !
Disadvantages:
(*) Problem : external fragmentation (holes) in the disk.
 Solution : Compaction. !
(*) Major problem : Files cannot grow. !
(*) How to find hole for the file: First fit , Best fit , Worst fit
 First fit and best fit have better performance. !!!
Linked Allocation !
(*) each file is a linked list of disk blocks !
(*) blocks may be scattered anywhere on the disk. !
(*) Allocate as needed, link together. !!!

Name Location Length File Pointer (FP)

Sam 7 6 10

Example: !!
 !!!
 !
 !!!!!
(*) Advantages:
 - Simple - need only starting address and size.
 - Free-space management system - no waste of space. No External fragmentation. (no
fragmentation)
 - File can grow !
(*) problem: address pointer waste each block as address of next block
 major problem: Supports sequential access only. !!
Indexed Allocation !
 - brings all pointers together into the index block.
each file has index block that contains address of data file blocks
(*) Need index table
(*) Random access in addition to sequential access.
(*) Dynamic access without external fragmentation, but have overhead of index
 block.
(*) Mapping from logical to physical in a file of maximum size of 256K words and
 block size of 512 words. We need only 1 block for index table. !!
 !!

 !
 !!!

Sector 0
(boot sector) Sector 1 Sector 2

(File bytes 2) Sector 3 Sector 4

Hard Disk

Sector 5 Sector 6 Sector 7
(File bytes 1) Sector 8 Sector 9

(File bytes 3)

Sector 10
(File bytes 5)

Sector 11
(File bytes 6)

Sector 12 Sector 13
(File bytes 4) Sector 14

Sector 0
(boot sector) Sector 101 Sector 102

(File bytes 2) Sector 103 Sector 104

Hard Disk

Sector 105 Sector 106
Sector 107

(Sam
pointer)

Sector 108 Sector 109
(File bytes 3)

Sector 110
(File bytes 5)

Sector 111
(File bytes 6)

Sector 112 Sector 113
(File bytes 4) Sector 114

 !!!!!!!!!
 !!!!!
Sequential access: If FP at index #n, the address of next block is T[n+1]
Direct access: If FP at index [0], address of block #n, T[n-1]
If file is large the last entry of T is the address of another block has the rest of T table
Disadvantages: For every File we waste at least one index block. it is based on ratio wasting,
if big file no affect, but if small file wasting block is too much wasting
Most OS now use hybrid system. !
Free-Space Management !
(*) Bit map - vector (n blocks)
1=full, 0=empty !!
(*) Linked list (free list) !!
(*) counting : keep the address of the first free block and the number n of
 adjacent free blocks. This is best used with contiguous allocation. !!
(*) grouping : Store the addresses of n free blocks in the first free block. (Same Idea
indexed allocation) !!!
Disk Scheduling !
Access time = seek time + latency time+ transfer time !!!

Sector 107
(Sam

pointer)

119

102

103

121

114

113

116

-1

….

Name Index block Length

Sam 112 7

Device
Directory

Has this table
of blocks

T

(*) Disk Requests - Track/Sector
 - Seek (This we can control it)
 - Latency (Hardware related we can do nothing with it)

- Transfer (Hardware related we can do nothing with it) !
(*) Minimize Seek Time (Our objective) !
Example:
Assume HD with 200 tracks (0-199)
The queue of waiting jobs request service in the track
98, 183, 37, 122, 14, 124, 65, 67
The read/write head is currently serving job at track 53, and just finished serving track 40 !!
(*) Seek Time » Seek Distance
(*) A number of different algorithms exist. !
 We illustrate them with a request queue (0-199). !
 98, 183, 37, 122, 14, 124, 65, 67 !
 Head is currently serving 53 and just finished 40. !
Algorithms: !
FCFS
Average head movement = (183-53 + 183-37 + 122-37 + 122-14 + 124-14 + 124-65 +
67-65)/8 = 50
SSF Shortest Seek First
AHM = (67-53 + 67-14 + 128-14)/8 = 29 track/job optimum
Major Problem: Starvation
SCAN (Elevator)
AHM = (199-53 + 199-14) / 8 = 41 track/job
LOOK
AHM = (183-53 + 183-14) /8 = 37 track/job
C-SCAN Circular Scan
AHM = (199-53 + 199 -0 + 37-0) /8 = 47 track/job
C-LOOK
AHM = (183-53 + 183-14 + 37-14) /8 = 40.25 track/job !!
NOTE : For diagrams and more details see the text book.

